Polarity compatible with a closure system
Czechoslovak Mathematical Journal (1979)
- Volume: 29, Issue: 1, page 13-20
- ISSN: 0011-4642
Access Full Article
topHow to cite
topŠmarda, Bohumil. "Polarity compatible with a closure system." Czechoslovak Mathematical Journal 29.1 (1979): 13-20. <http://eudml.org/doc/13100>.
@article{Šmarda1979,
author = {Šmarda, Bohumil},
journal = {Czechoslovak Mathematical Journal},
keywords = {closure system; C-polarity; closure space},
language = {eng},
number = {1},
pages = {13-20},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Polarity compatible with a closure system},
url = {http://eudml.org/doc/13100},
volume = {29},
year = {1979},
}
TY - JOUR
AU - Šmarda, Bohumil
TI - Polarity compatible with a closure system
JO - Czechoslovak Mathematical Journal
PY - 1979
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 1
SP - 13
EP - 20
LA - eng
KW - closure system; C-polarity; closure space
UR - http://eudml.org/doc/13100
ER -
References
top- R. D. Byrd, M-polars in lattice-ordered groups, Czech. Math. J. 18 (93) 1968, 230-239. (1968) Zbl0174.06004MR0227066
- P. M. Cohn, Universal Algebra, New York, 1965. (1965) Zbl0141.01002MR0175948
- A. W. M. Glass, 10.1090/S0002-9947-1972-0295991-3, Trans. Amer. Math. Soc., 166 (1972), 1-25. (1972) Zbl0235.06004MR0295991DOI10.1090/S0002-9947-1972-0295991-3
- J. Rachůnek, Prime subgroups of ordered groups, Czech. Math. J. 24 (99), 1974, 541-551. (1974) MR0357274
- F. Šik, On the set of lattice ordered groups, Czech. Math. J. 6 (1956), 1-25. (1956)
- F. Šik, A characterization of polarities the lattice of polars of which is Boolean, 1974 (un- published).
- B. Šmarda, Polars and x-ideals in semigroups, Mat. čas. 1 (26), 1976, 31-37. (1976) MR0427506
- В. Šmarda, Polars on closure spaces, Arch. Math. 2, ХIII (1977), 117-124. (1977) MR0460192
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.