On a result of Tzitzeica and a new asymptotic transformation of minimal projective surfaces

Froim Marcus

Czechoslovak Mathematical Journal (1980)

  • Volume: 30, Issue: 2, page 213-227
  • ISSN: 0011-4642

How to cite

top

Marcus, Froim. "On a result of Tzitzeica and a new asymptotic transformation of minimal projective surfaces." Czechoslovak Mathematical Journal 30.2 (1980): 213-227. <http://eudml.org/doc/13193>.

@article{Marcus1980,
author = {Marcus, Froim},
journal = {Czechoslovak Mathematical Journal},
keywords = {Tzitzeica-Wilczynski surfaces; general asymptotic transformation; minimal projective surface; rectilinear W-congruence; second focal surfaces},
language = {eng},
number = {2},
pages = {213-227},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a result of Tzitzeica and a new asymptotic transformation of minimal projective surfaces},
url = {http://eudml.org/doc/13193},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Marcus, Froim
TI - On a result of Tzitzeica and a new asymptotic transformation of minimal projective surfaces
JO - Czechoslovak Mathematical Journal
PY - 1980
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 30
IS - 2
SP - 213
EP - 227
LA - eng
KW - Tzitzeica-Wilczynski surfaces; general asymptotic transformation; minimal projective surface; rectilinear W-congruence; second focal surfaces
UR - http://eudml.org/doc/13193
ER -

References

top
  1. G. Tzitzeica, Sur une nouvelle classe de surfaces, С. R. Acad. Sci. Paris T. 144 (1907), p. 1257-1259, T. 150 (1910), p. 955-956, ou Oeuvres T. 1. Bucarest Imprimeria Nationale 1941, Acad. R. S. România pp. 128-130, 188-190, 191-192. (1907) Zbl38.0642.01
  2. E. Y. Wilczynski, 10.1007/BF01458675, Mathematische Annalen Vol. 76 (1915), pp. 129-160. (1915) Zbl45.0866.02DOI10.1007/BF01458675
  3. K. Tzitzeica, Géométrie différentielle projective des réseaux, Académie Roumaine Bucarest, 1923. (1923) Zbl47.0696.02
  4. R. Calapso, Giorgio Tzitzeica e la sua opera, Simpozionul de Geometrie si Analiza globala, p. 21 - 39, Editura Academiei R. S. Romania, Bucarest, 1976. (1976) MR0490858
  5. G. Fubini E. Čech, Geometria proiettiva diferenziale, T. 1, N. Zanichevlli, Bologna, 1926. (1926) Zbl52.0751.02
  6. G. Fubini E. Čech, Introduction a la géométrie projective différentielle de surfaces, chapitre XI, Gauthier-Villars. Paris, 1931. (1931) Zbl57.0936.01
  7. H. Ionas, Sopra una classe di trasformazioni asintotiche, applicabili in particolare alle superficie la cui curvatura è proporzionale alla quarta potenza della distanza del piano tangente da un punto fisso, Annali di Mat. pura, ed. applicata. Vol. XXX, série III, 1921, pp. 223-255. (1921) Zbl48.0800.02
  8. F. Marcus, Sur les surfaces minima projectives, Archivum Mathematicum, Tomus 6 1970/3 Brno, pp. 145-147. (1970) MR0296830
  9. E. Čech, Sur les correspondances asymptotiques entre deux surfaces, Atti R. Acad. Naz. des Lincei seria sesta, Vol. VIII, 1928, pp. 484-486, 552-554. (1928) Zbl54.0739.01
  10. G. Thomsen, Sulle superficie minima proiettive, Annali di Mat. pura ed applicata, Serie IV, 5, 1928, pp. 169-184. (1928) Zbl54.0782.03MR1553114
  11. O. Mayer, Contribution à l'étude des surfaces minima projectives, Bul. Sci. Math. T. LVI, 1932, pp. 146-169, 188-200. (1932) Zbl0005.11703
  12. F. Marcus, Again on the surfaces which allow 2 projective transformation into themselves, Analele ştünţifice ale Universităţü AL. J. Cuza, Iasi T. XXII s. 1, 1976, p. 35 - 48. (1976) Zbl0396.53005MR0642205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.