A singular spectral identity and inequality involving the Dirichlet integral of an ordinary differential expression

William Norrie Everitt; S. D. Wray

Czechoslovak Mathematical Journal (1982)

  • Volume: 32, Issue: 4, page 589-607
  • ISSN: 0011-4642

How to cite

top

Everitt, William Norrie, and Wray, S. D.. "A singular spectral identity and inequality involving the Dirichlet integral of an ordinary differential expression." Czechoslovak Mathematical Journal 32.4 (1982): 589-607. <http://eudml.org/doc/13344>.

@article{Everitt1982,
author = {Everitt, William Norrie, Wray, S. D.},
journal = {Czechoslovak Mathematical Journal},
keywords = {spectral distribution function; Dirichlet integral; strong limit-point; quadratic form; symmetric second-order differential expression},
language = {eng},
number = {4},
pages = {589-607},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A singular spectral identity and inequality involving the Dirichlet integral of an ordinary differential expression},
url = {http://eudml.org/doc/13344},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Everitt, William Norrie
AU - Wray, S. D.
TI - A singular spectral identity and inequality involving the Dirichlet integral of an ordinary differential expression
JO - Czechoslovak Mathematical Journal
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 4
SP - 589
EP - 607
LA - eng
KW - spectral distribution function; Dirichlet integral; strong limit-point; quadratic form; symmetric second-order differential expression
UR - http://eudml.org/doc/13344
ER -

References

top
  1. Amos R. J., Everitt W. N., On a quadratic integral inequality, Proc. Roy. Soc. Edinburgh Sect. A 78 (1978), 241-256. (1978) Zbl0393.26008MR0466454
  2. Amos R. J., Everitt W. N., 10.1007/BF00250668, Arch. Rational Mech. Anal. 71 (1979), 15-40. (1979) Zbl0427.26007MR0522705DOI10.1007/BF00250668
  3. Bradley J. S., Everitt W. N., 10.1090/S0002-9947-1973-0330606-8, Trans. Amer. Math. Soc. 182 (1973), 303 - 321. (1973) Zbl0273.26010MR0330606DOI10.1090/S0002-9947-1973-0330606-8
  4. Bradley J. S., Everitt W. N., 10.1090/S0002-9939-1976-0425249-X, Proc. Amer. Math. Soc. 61 (1976), 29-35. (1976) MR0425249DOI10.1090/S0002-9939-1976-0425249-X
  5. Evans W. D., 10.1007/BFb0087329, Lecture Notes in Mathematics 564, Springer, Berlin (1976). (1976) Zbl0388.34013MR0593161DOI10.1007/BFb0087329
  6. Everitt W. N., Hinton D. B., Wong J. S. W., On the strong limit - n classification of linear ordinary differential expressions of order 2 n , Proc. London Math. Soc. 29 (1974), 351-367. (1974) MR0409956
  7. Everitt W. N., On the strong limit-point condition of second-order differential expressions, International conference on differential equations, 287-307, Academic Press, New York (1975). (1975) Zbl0339.34018MR0435497
  8. Everitt W. N., 10.4153/CJM-1976-033-3, Canad. J. Math. XXVIII (1976), 312-320. (1976) Zbl0338.34011MR0430391DOI10.4153/CJM-1976-033-3
  9. Friedrichs K. О., 10.1007/BF01449150, Math. Ann. 109 (1934), 465 - 487. (1934) Zbl0008.39203MR1512905DOI10.1007/BF01449150
  10. Friedrichs K. O., Spectral theory of operators in Hilbert space, Springer, Berlin (1973). (1973) Zbl0266.47001MR0470698
  11. Hinton D. В., 10.1016/0022-0396(77)90152-8, J. Differential Equations 24 (1977), 282-308. (1977) Zbl0405.34025MR0454140DOI10.1016/0022-0396(77)90152-8
  12. Hinton D. В., Eigenfunction expansions and spectral matrices of singular differential operators, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 289-308. (1978) Zbl0389.34021MR0516229
  13. Kolf H., 10.1007/BF01350583, Math. Ann. 210 (1974), 197-205. (1974) MR0355177DOI10.1007/BF01350583
  14. Kato T., Perturbation theory for linear operators, (1st Edn.), Springer, Berlin (1966). (1966) Zbl0148.12601
  15. Kwong M. K., 10.1093/qmath/28.2.201, Quart. J. Math. Oxford (2), 28 (1977), 201-208. (1977) Zbl0403.34025MR0450658DOI10.1093/qmath/28.2.201
  16. Kwong M. K., 10.1093/qmath/28.3.329, Quart. J. Math. Oxford (2) 28 (1977), 329-338. (1977) Zbl0425.34002MR0454128DOI10.1093/qmath/28.3.329
  17. Naĭmark M. A., Linear differential operators: II, Ungar, New York (1968). (1968) 
  18. Putnam C. R., 10.2307/2372212, Amer. J. Math. 70 (1948), 780-803. (1948) Zbl0038.26501MR0030133DOI10.2307/2372212
  19. Sears D. B., Wray S. D., An inequality of C. R. Putnam involving a Dirichlet functional, Proc. Roy. Soc. Edinburgh Sect. A 75 (1976), 199-207. (1976) Zbl0334.34024MR0445057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.