A singular spectral identity and inequality involving the Dirichlet integral of an ordinary differential expression
William Norrie Everitt; S. D. Wray
Czechoslovak Mathematical Journal (1982)
- Volume: 32, Issue: 4, page 589-607
- ISSN: 0011-4642
Access Full Article
topHow to cite
topEveritt, William Norrie, and Wray, S. D.. "A singular spectral identity and inequality involving the Dirichlet integral of an ordinary differential expression." Czechoslovak Mathematical Journal 32.4 (1982): 589-607. <http://eudml.org/doc/13344>.
@article{Everitt1982,
author = {Everitt, William Norrie, Wray, S. D.},
journal = {Czechoslovak Mathematical Journal},
keywords = {spectral distribution function; Dirichlet integral; strong limit-point; quadratic form; symmetric second-order differential expression},
language = {eng},
number = {4},
pages = {589-607},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A singular spectral identity and inequality involving the Dirichlet integral of an ordinary differential expression},
url = {http://eudml.org/doc/13344},
volume = {32},
year = {1982},
}
TY - JOUR
AU - Everitt, William Norrie
AU - Wray, S. D.
TI - A singular spectral identity and inequality involving the Dirichlet integral of an ordinary differential expression
JO - Czechoslovak Mathematical Journal
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 4
SP - 589
EP - 607
LA - eng
KW - spectral distribution function; Dirichlet integral; strong limit-point; quadratic form; symmetric second-order differential expression
UR - http://eudml.org/doc/13344
ER -
References
top- Amos R. J., Everitt W. N., On a quadratic integral inequality, Proc. Roy. Soc. Edinburgh Sect. A 78 (1978), 241-256. (1978) Zbl0393.26008MR0466454
- Amos R. J., Everitt W. N., 10.1007/BF00250668, Arch. Rational Mech. Anal. 71 (1979), 15-40. (1979) Zbl0427.26007MR0522705DOI10.1007/BF00250668
- Bradley J. S., Everitt W. N., 10.1090/S0002-9947-1973-0330606-8, Trans. Amer. Math. Soc. 182 (1973), 303 - 321. (1973) Zbl0273.26010MR0330606DOI10.1090/S0002-9947-1973-0330606-8
- Bradley J. S., Everitt W. N., 10.1090/S0002-9939-1976-0425249-X, Proc. Amer. Math. Soc. 61 (1976), 29-35. (1976) MR0425249DOI10.1090/S0002-9939-1976-0425249-X
- Evans W. D., 10.1007/BFb0087329, Lecture Notes in Mathematics 564, Springer, Berlin (1976). (1976) Zbl0388.34013MR0593161DOI10.1007/BFb0087329
- Everitt W. N., Hinton D. B., Wong J. S. W., On the strong limit - classification of linear ordinary differential expressions of order 2, Proc. London Math. Soc. 29 (1974), 351-367. (1974) MR0409956
- Everitt W. N., On the strong limit-point condition of second-order differential expressions, International conference on differential equations, 287-307, Academic Press, New York (1975). (1975) Zbl0339.34018MR0435497
- Everitt W. N., 10.4153/CJM-1976-033-3, Canad. J. Math. XXVIII (1976), 312-320. (1976) Zbl0338.34011MR0430391DOI10.4153/CJM-1976-033-3
- Friedrichs K. О., 10.1007/BF01449150, Math. Ann. 109 (1934), 465 - 487. (1934) Zbl0008.39203MR1512905DOI10.1007/BF01449150
- Friedrichs K. O., Spectral theory of operators in Hilbert space, Springer, Berlin (1973). (1973) Zbl0266.47001MR0470698
- Hinton D. В., 10.1016/0022-0396(77)90152-8, J. Differential Equations 24 (1977), 282-308. (1977) Zbl0405.34025MR0454140DOI10.1016/0022-0396(77)90152-8
- Hinton D. В., Eigenfunction expansions and spectral matrices of singular differential operators, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 289-308. (1978) Zbl0389.34021MR0516229
- Kolf H., 10.1007/BF01350583, Math. Ann. 210 (1974), 197-205. (1974) MR0355177DOI10.1007/BF01350583
- Kato T., Perturbation theory for linear operators, (1st Edn.), Springer, Berlin (1966). (1966) Zbl0148.12601
- Kwong M. K., 10.1093/qmath/28.2.201, Quart. J. Math. Oxford (2), 28 (1977), 201-208. (1977) Zbl0403.34025MR0450658DOI10.1093/qmath/28.2.201
- Kwong M. K., 10.1093/qmath/28.3.329, Quart. J. Math. Oxford (2) 28 (1977), 329-338. (1977) Zbl0425.34002MR0454128DOI10.1093/qmath/28.3.329
- Naĭmark M. A., Linear differential operators: II, Ungar, New York (1968). (1968)
- Putnam C. R., 10.2307/2372212, Amer. J. Math. 70 (1948), 780-803. (1948) Zbl0038.26501MR0030133DOI10.2307/2372212
- Sears D. B., Wray S. D., An inequality of C. R. Putnam involving a Dirichlet functional, Proc. Roy. Soc. Edinburgh Sect. A 75 (1976), 199-207. (1976) Zbl0334.34024MR0445057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.