Convergence of nested classical iterative methods for linear systems.
D.J. Rose; P.J. Lanzkron; D.B. Szyld
Numerische Mathematik (1990/91)
- Volume: 58, Issue: 7, page 685-702
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topRose, D.J., Lanzkron, P.J., and Szyld, D.B.. "Convergence of nested classical iterative methods for linear systems.." Numerische Mathematik 58.7 (1990/91): 685-702. <http://eudml.org/doc/133525>.
@article{Rose1990/91,
author = {Rose, D.J., Lanzkron, P.J., Szyld, D.B.},
journal = {Numerische Mathematik},
keywords = {two-stage iterative method; nested iterative method; convergence; splitting; inner iterations; iterative block Gauss-Seidel; block methods},
number = {7},
pages = {685-702},
title = {Convergence of nested classical iterative methods for linear systems.},
url = {http://eudml.org/doc/133525},
volume = {58},
year = {1990/91},
}
TY - JOUR
AU - Rose, D.J.
AU - Lanzkron, P.J.
AU - Szyld, D.B.
TI - Convergence of nested classical iterative methods for linear systems.
JO - Numerische Mathematik
PY - 1990/91
VL - 58
IS - 7
SP - 685
EP - 702
KW - two-stage iterative method; nested iterative method; convergence; splitting; inner iterations; iterative block Gauss-Seidel; block methods
UR - http://eudml.org/doc/133525
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.