Weak spectral equivalence and weak spectral convergence

Gabriela Dinescu

Czechoslovak Mathematical Journal (1984)

  • Volume: 34, Issue: 2, page 203-226
  • ISSN: 0011-4642

How to cite

top

Dinescu, Gabriela. "Weak spectral equivalence and weak spectral convergence." Czechoslovak Mathematical Journal 34.2 (1984): 203-226. <http://eudml.org/doc/13444>.

@article{Dinescu1984,
author = {Dinescu, Gabriela},
journal = {Czechoslovak Mathematical Journal},
keywords = {weak spectral convergence; local spectrum; single valued extension property; quasi-nilpotent equivalence; weak spectral equivalence},
language = {eng},
number = {2},
pages = {203-226},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak spectral equivalence and weak spectral convergence},
url = {http://eudml.org/doc/13444},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Dinescu, Gabriela
TI - Weak spectral equivalence and weak spectral convergence
JO - Czechoslovak Mathematical Journal
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 2
SP - 203
EP - 226
LA - eng
KW - weak spectral convergence; local spectrum; single valued extension property; quasi-nilpotent equivalence; weak spectral equivalence
UR - http://eudml.org/doc/13444
ER -

References

top
  1. Apostol C., Spectral Decompositions and Functional Calculus, Revue Roum. Math. Pures et Appl., XIII, 10 (1968), p. 1481-1528. (1968) Zbl0176.43701MR0250092
  2. Apostol C., 10.1016/0022-1236(68)90003-7, J. of Functional Analysis, II, 4 (1968), p. 395-408. (1968) Zbl0174.44405MR0233234DOI10.1016/0022-1236(68)90003-7
  3. Bacalu I., Descompuneri spectrale reziduale, I, Studii si cerc. mat., 32, 5 (1980), p. 467- 504. (1980) MR0616977
  4. Bourbaki N., Topologie générale, Ch. IX, Hermann, Paris, 1961. (1961) Zbl0139.15904
  5. Colojoara I., Foias C., Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968. (1968) Zbl0189.44201MR0394282
  6. Erdelyi I., Lange R., Spectral Decompositions on Danach Spaces, Lecture Notes in Math. nr. 623, Springer, 1977. (1977) MR0482359
  7. Radjabalipour M., Decomposable operators, Bull. Iranian Math. Soc. 9 (1978), p. 1-49. (1978) Zbl0358.47023MR0531921
  8. Vasilescu F. H., Spectral Distance of two Operators, Revue Roum. Math. Pures et Appl., ХII, 5 (1967), p. 733-736. (1967) Zbl0156.38204MR0222699
  9. Vasilescu F. H., On an Asymptotic Behaviour of Operators, Revue Roum. Math. Pures et Appl., ХII, 3 (1967), p. 353-358. (1967) Zbl0145.39202MR0218917
  10. Vasilescu F. H., 10.2748/tmj/1178242896, Tôhoku Math. J., 21, 4 (1969), p. 509-522. (1969) Zbl0193.10001MR0275208DOI10.2748/tmj/1178242896
  11. Vasilescu F. H., Calcul functional anaiitic multidimensional, Edit. Academiei RSR, Bucureşti, 1979. (1979) 
  12. Vasilescu F. H., Operatori rezidual decompozabili in spaţii Fréchet, Studii si cerc. matem., 21, 8 (1969), p. 1181-1248. (1969) MR0322580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.