Representative properties of the quasi-ordered set

Josef Šlapal

Czechoslovak Mathematical Journal (1984)

  • Volume: 34, Issue: 3, page 390-395
  • ISSN: 0011-4642

How to cite

top

Šlapal, Josef. "Representative properties of the quasi-ordered set $F(\alpha , M)$." Czechoslovak Mathematical Journal 34.3 (1984): 390-395. <http://eudml.org/doc/13463>.

@article{Šlapal1984,
author = {Šlapal, Josef},
journal = {Czechoslovak Mathematical Journal},
keywords = {universal quasiordered set; ordered sets; chains; antichains},
language = {eng},
number = {3},
pages = {390-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Representative properties of the quasi-ordered set $F(\alpha , M)$},
url = {http://eudml.org/doc/13463},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Šlapal, Josef
TI - Representative properties of the quasi-ordered set $F(\alpha , M)$
JO - Czechoslovak Mathematical Journal
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 3
SP - 390
EP - 395
LA - eng
KW - universal quasiordered set; ordered sets; chains; antichains
UR - http://eudml.org/doc/13463
ER -

References

top
  1. G. Birkhoff, Lattice Theory, Third Edition, Providence, Rhode Island, 1967. (1967) Zbl0153.02501MR0227053
  2. F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914. (1914) 
  3. W. Sierpisňki, Cardinal and Ordinal Numbers, Warszawa, 1958. (1958) 
  4. M. Novotný, Über quasi-geordnete Mengen, Czech. Math. Journ. 9 (84) (1959), 327-333. (1959) MR0112847
  5. V. Novák, On universal quasi-ordered sets, Czech. Math. Journ. 15 (90) (1965), 589-595. (1965) MR0190004
  6. L. Mišík, About one theorem of V. Novák, Czech. Math. Journ. 15 (90) (1965), 596. (1965) MR0190005

NotesEmbed ?

top

You must be logged in to post comments.