Archimedean equivalence for strictly positive lattice-ordered semigroups

Marlow Anderson

Czechoslovak Mathematical Journal (1986)

  • Volume: 36, Issue: 1, page 18-27
  • ISSN: 0011-4642

How to cite

top

Anderson, Marlow. "Archimedean equivalence for strictly positive lattice-ordered semigroups." Czechoslovak Mathematical Journal 36.1 (1986): 18-27. <http://eudml.org/doc/13551>.

@article{Anderson1986,
author = {Anderson, Marlow},
journal = {Czechoslovak Mathematical Journal},
keywords = {archimedean equivalence; lattice-ordered semigroups; nil-semigroup; subdirect product of steps},
language = {eng},
number = {1},
pages = {18-27},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Archimedean equivalence for strictly positive lattice-ordered semigroups},
url = {http://eudml.org/doc/13551},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Anderson, Marlow
TI - Archimedean equivalence for strictly positive lattice-ordered semigroups
JO - Czechoslovak Mathematical Journal
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 1
SP - 18
EP - 27
LA - eng
KW - archimedean equivalence; lattice-ordered semigroups; nil-semigroup; subdirect product of steps
UR - http://eudml.org/doc/13551
ER -

References

top
  1. M. Anderson, Classes of lattice-ordered semigroups describable in terms of chains, to appear. 
  2. M. Anderson, C. С. Edwards, Lattice properties of the symmetric weakly inverse semigroup on a totally ordered set, J. Austral. Math. Soc. 23 (1981), 395-404. (1981) Zbl0488.06010MR0638267
  3. M. Anderson, C. C. Edwards, 10.4153/CMB-1984-034-6, Canad. Math. Bull., 27 (1984), 238-240. (1984) MR0740420DOI10.4153/CMB-1984-034-6
  4. A. Bigard K. Keimel, S. Wolfenstein, Groups et Anneaux Reticules, Springer-Verlag, Berlin, 1977. (1977) MR0552653
  5. A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, Volume II, AMS, Providence, 1967. (1967) Zbl0178.01203MR0218472
  6. P. Conrad, Archimedean extensions of lattice-ordered groups, J. Indian Math. Soc. 30 (1966), 131-160. (1966) Zbl0168.27702MR0224519
  7. P. Conrad J. Harvey, C. Holland, 10.1090/S0002-9947-1963-0151534-0, Trans. A.M.S. 108 (1963), 143-169. (1963) MR0151534DOI10.1090/S0002-9947-1963-0151534-0
  8. L. Fuchs, Teilweise geordnete algebraische Strukturen, Akademiai Kiado, Budapest, 1966. (1966) Zbl0154.00708MR0204547
  9. H. Hahn, Über die nichtarchimedischen Grossensysteme, Sitz. ber. K. Akad. der Wiss., Math. Nat. Kl. IIa 116 (1907), 601-655. (1907) 
  10. O. Holder, Die Axiome der Quantitat und die Lehre vom Mass, Ber. Verh. Sachs. Ges. Wiss. Leipzig, Math.-Phys. Cl. 53 (1901), 1-64. (1901) 
  11. W. C. Holland, 10.1307/mmj/1028998976, Michigan Math. J. 10 (1963), 399-408. (1963) MR0158009DOI10.1307/mmj/1028998976
  12. D. Khoun, Cardinal des groupes reticules, C. R. Acad. Sc. Paris 270 (1970) A1150-A1154. (1970) 
  13. T. Merlier, Nildemi-groupes totalement ordonnes, Czech. Math. J. 24 (99) (1974), 403-410. (1974) Zbl0321.06014MR0347700
  14. T. Saito, 10.1017/S1446788700006200, J. Austral. Math. Soc. 8 (1968), 547-556. (1968) Zbl0159.02803MR0230661DOI10.1017/S1446788700006200
  15. T. Saito, Archimedean classes in a nonnegatively ordered semigroup, J. Indian Math. Soc. 43 (1979), 79-104. (1979) Zbl0528.06016MR0682004
  16. T. Saito, Nonnegatively ordered semigroups in the strict sense and problems of Satyanarayana, I. Proc. 3rd Symposium on Semigroups (Inter-Univ. Sem. House of Kansai, Kobe, 1979), Osaka Univ., Osaka, 1980, 45-49. (1979) MR0571699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.