A strong convergence in and upper -continuous operators
Czechoslovak Mathematical Journal (1988)
- Volume: 38, Issue: 3, page 420-424
- ISSN: 0011-4642
Access Full Article
topHow to cite
topHaščák, Alexander. "A strong convergence in $L^p$ and upper $q$-continuous operators." Czechoslovak Mathematical Journal 38.3 (1988): 420-424. <http://eudml.org/doc/13716>.
@article{Haščák1988,
author = {Haščák, Alexander},
journal = {Czechoslovak Mathematical Journal},
keywords = {upper q-continuous operators; Banach-Saks’ theorem in the case },
language = {eng},
number = {3},
pages = {420-424},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A strong convergence in $L^p$ and upper $q$-continuous operators},
url = {http://eudml.org/doc/13716},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Haščák, Alexander
TI - A strong convergence in $L^p$ and upper $q$-continuous operators
JO - Czechoslovak Mathematical Journal
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 3
SP - 420
EP - 424
LA - eng
KW - upper q-continuous operators; Banach-Saks’ theorem in the case
UR - http://eudml.org/doc/13716
ER -
References
top- S. Banach S. Saks, 10.4064/sm-2-1-51-57, Studia Math., 2 (1930),. 51-57. (1930) DOI10.4064/sm-2-1-51-57
- A. Haščák, Fixed Point Theorems for Multivalued Mappings, Czech. Math. J,, 35 {110} 1985, 533-542. (1985) MR0809039
- A. Haščák, Integral Equivalence of Multivalued Differential Systems II, Colloquia Math. Soc. J. Bolyai 47, Differential Equations: Qualitative Theory, Szeged (Hungary), 1984. (1984) MR0872343
- S. Mazur, 10.4064/sm-4-1-70-84, Studia Math., 5 (1933), 70-84. (1933) DOI10.4064/sm-4-1-70-84
- F. Riesz В. Sz.-Nagy, Leçons d'analyse fonctionnelle, Budapest 1972. (1972)
- K. Yosida, Functional Analysis, Springer-Verlag, ВегИп-Heidelberg-New York, 1966. (1966)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.