Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
Aequationes mathematicae (1986)
- Volume: 31, page 294-299
- ISSN: 0001-9054; 1420-8903/e
Access Full Article
topHow to cite
topFiedler, H.. "Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.." Aequationes mathematicae 31 (1986): 294-299. <http://eudml.org/doc/137165>.
@article{Fiedler1986,
author = {Fiedler, H.},
journal = {Aequationes mathematicae},
keywords = {Lagrange interpolant; Chebyshev polynomial},
pages = {294-299},
title = {Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.},
url = {http://eudml.org/doc/137165},
volume = {31},
year = {1986},
}
TY - JOUR
AU - Fiedler, H.
TI - Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
JO - Aequationes mathematicae
PY - 1986
VL - 31
SP - 294
EP - 299
KW - Lagrange interpolant; Chebyshev polynomial
UR - http://eudml.org/doc/137165
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.