# Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.

Aequationes mathematicae (1986)

- Volume: 31, page 294-299
- ISSN: 0001-9054; 1420-8903/e

## Access Full Article

top## How to cite

topFiedler, H.. "Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.." Aequationes mathematicae 31 (1986): 294-299. <http://eudml.org/doc/137165>.

@article{Fiedler1986,

author = {Fiedler, H.},

journal = {Aequationes mathematicae},

keywords = {Lagrange interpolant; Chebyshev polynomial},

pages = {294-299},

title = {Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.},

url = {http://eudml.org/doc/137165},

volume = {31},

year = {1986},

}

TY - JOUR

AU - Fiedler, H.

TI - Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.

JO - Aequationes mathematicae

PY - 1986

VL - 31

SP - 294

EP - 299

KW - Lagrange interpolant; Chebyshev polynomial

UR - http://eudml.org/doc/137165

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.