Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
Aequationes mathematicae (1986)
- Volume: 31, page 294-299
- ISSN: 0001-9054; 1420-8903/e
Access Full Article
topHow to cite
topFiedler, H.. "Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.." Aequationes mathematicae 31 (1986): 294-299. <http://eudml.org/doc/137165>.
@article{Fiedler1986,
	author = {Fiedler, H.},
	journal = {Aequationes mathematicae},
	keywords = {Lagrange interpolant; Chebyshev polynomial},
	pages = {294-299},
	title = {Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.},
	url = {http://eudml.org/doc/137165},
	volume = {31},
	year = {1986},
}
TY  - JOUR
AU  - Fiedler, H.
TI  - Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
JO  - Aequationes mathematicae
PY  - 1986
VL  - 31
SP  - 294
EP  - 299
KW  - Lagrange interpolant; Chebyshev polynomial
UR  - http://eudml.org/doc/137165
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
