Asymptotic stability for a class of integrodifferential equations

William E. Fitzgibbon

Czechoslovak Mathematical Journal (1988)

  • Volume: 38, Issue: 4, page 618-622
  • ISSN: 0011-4642

How to cite

top

Fitzgibbon, William E.. "Asymptotic stability for a class of integrodifferential equations." Czechoslovak Mathematical Journal 38.4 (1988): 618-622. <http://eudml.org/doc/13736>.

@article{Fitzgibbon1988,
author = {Fitzgibbon, William E.},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotic stability; abstract semi-linear Volterra equations; infinite delay},
language = {eng},
number = {4},
pages = {618-622},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic stability for a class of integrodifferential equations},
url = {http://eudml.org/doc/13736},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Fitzgibbon, William E.
TI - Asymptotic stability for a class of integrodifferential equations
JO - Czechoslovak Mathematical Journal
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 4
SP - 618
EP - 622
LA - eng
KW - asymptotic stability; abstract semi-linear Volterra equations; infinite delay
UR - http://eudml.org/doc/13736
ER -

References

top
  1. J. Finn, L. Wheeler, 10.1007/BF01596220, Z. Angew. Math. Physics, 23 (1972), 927-940. (1972) Zbl0249.35034MR0334700DOI10.1007/BF01596220
  2. W. Fitzgibbon, Abstract hyperbolic integrodifferential equations, J. Math, Anal. Appl., 84(1981),299-310. (1981) Zbl0506.45016MR0639664
  3. W. Fitzgibbon, Convergence theorem for semilinear Volterra equations with infinite delay, J. Integral Equations (to appear). MR0785859
  4. W. Fitzgibbon, 10.1007/BF01366497, Monat Math, 84 (1977), 275-288. (1977) Zbl0382.45003MR0481982DOI10.1007/BF01366497
  5. W. Fitzgibbon, 10.1016/0362-546X(80)90075-9, J. Nonlinear Analysis: TMA, 4 (1980), 745-760. (1980) Zbl0442.45014MR0582543DOI10.1016/0362-546X(80)90075-9
  6. A. Friedman, Partial Differential Equations, Holt, Rhinehart and Winston, New York, 1969. (1969) Zbl0224.35002MR0445088
  7. J. Goldstein, Semigroups of Operators and Abstract Cauchy Problems, Lecture Notes, Tulane University, 1970. (1970) Zbl0219.47037
  8. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966. (1966) Zbl0148.12601MR0203473
  9. M. Heard, An abstract semilinear hyperbolic Volterra integrodifferential equations, Integral and Functional Differential Equations, Lecture notes in Pure and Applied Mathematics, 67, Marcel Dekker, 1979, New York, 185-193. (1979) MR0617048
  10. R. MacCamy, 10.1090/qam/452184, Q. Appl. Math. 35 (1977), 1-9. (1977) DOI10.1090/qam/452184
  11. J. Nunziato, 10.1090/qam/295683, Q. Appl. Math. 29 (1971) 187-204. (1971) Zbl0227.73011MR0295683DOI10.1090/qam/295683
  12. J. Nohel, Nonlinear Volterra equations for heat flow in materials with memory, Integral and Functional Differential Equations, Lecture Notes in Pure and Applied Mathematics 67, Marcel Dekker, 1979, New York, 3 - 82. (1979) MR0617039
  13. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. (1983) Zbl0516.47023MR0710486
  14. R. Redlinger, On the asymptotic stability of a semilinear functional differential equation in Banach space, J. Math. Anal. Appl. (tp appear). 
  15. С. Travis, G. Webb, 10.1137/0510038, SIAM J. Math. Anal. 10 (1979), 412-424. (1979) MR0523855DOI10.1137/0510038
  16. G. Webb, An abstract semilinear Volterra integrodifferential equation, Proc. Amer. Math. Soc.,69 (1978), 255-260. (1978) Zbl0388.45012MR0467214
  17. G. Webb, A class of reaction-diffusion equations, Proc. Intl. Conf. on Volterra Equations, Helsinki, Lecture Notes in Mathematics, Springer-Verlag, Berlin 1982. (1982) 
  18. G. Webb, 10.1016/S0362-546X(97)90007-9, J. Nonlinear Analysis: TMA, 1 (1977), 415-427. (1977) Zbl0364.45007MR0511684DOI10.1016/S0362-546X(97)90007-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.