On bijectivity of the canonical transformation
Czechoslovak Mathematical Journal (1988)
- Volume: 38, Issue: 4, page 682-700
- ISSN: 0011-4642
Access Full Article
topHow to cite
topBartík, Vojtěch, and Markl, Martin. "On bijectivity of the canonical transformation $[\beta _G X;Y]_G \rightarrow [X;Y]_G$." Czechoslovak Mathematical Journal 38.4 (1988): 682-700. <http://eudml.org/doc/13742>.
@article{Bartík1988,
author = {Bartík, Vojtěch, Markl, Martin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Čech-Stone compactification; completely regular G-spaces; compact Lie group; G-homotopy classes of G-maps; Čech-Stone G-compactification},
language = {eng},
number = {4},
pages = {682-700},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On bijectivity of the canonical transformation $[\beta _G X;Y]_G \rightarrow [X;Y]_G$},
url = {http://eudml.org/doc/13742},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Bartík, Vojtěch
AU - Markl, Martin
TI - On bijectivity of the canonical transformation $[\beta _G X;Y]_G \rightarrow [X;Y]_G$
JO - Czechoslovak Mathematical Journal
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 4
SP - 682
EP - 700
LA - eng
KW - Čech-Stone compactification; completely regular G-spaces; compact Lie group; G-homotopy classes of G-maps; Čech-Stone G-compactification
UR - http://eudml.org/doc/13742
ER -
References
top- Bartík v., General bridge-mapping theorem, Comment. Math. Univ. Carolinae 16, 4 (1975), 693-698 (Russian). (1975) MR0391092
- Bartík V., 10.1093/qmath/29.1.77, Quart. J. Math. Oxford (2), 29 (1978), 77-91. (1978) MR0493853DOI10.1093/qmath/29.1.77
- Bartík V., On the bijectivity of the canonical transformation , Abstracts of 4th International Conference ,,Topology and its Applications", Dubrovnik, Sept. 30-Oct. 5 1985, Zagreb 1985. (1985)
- Borel A., Seminar on transformation groups, Annals of Math. Studies 46, Princeton University Press, 1960. (1960) Zbl0091.37202MR0116341
- Bredon G. E., Introduction to compact transformation groups, New York, 1972. (1972) Zbl0246.57017MR0413144
- Colder A., Siegel J., 10.1090/S0002-9947-1978-0458416-6, Trans. Amer. Math. Soc. 235 (1978), 245-270. (1978) MR0458416DOI10.1090/S0002-9947-1978-0458416-6
- Calder A., Siegel J., 10.1090/S0002-9939-1980-0550515-8, Proc. Amer. Math. Soc. 78 (1980), 288-290. (1980) Zbl0452.55007MR0550515DOI10.1090/S0002-9939-1980-0550515-8
- Dold A., Lectures on Algebraic Topology, Springer-Verlag 1972. (1972) Zbl0234.55001MR0415602
- Markl M., On the -spaces having an -approximation by a -complex of finite -type, Comment. Math. Univ. Carolinae 24, 3 (1983). (1983) MR0730149
- Matumoto T., Equivariant -theory and Fredholm operators, J. Fac. Sci. Univ. Tokyo, Sect. IA, 18(1971), 109-112. (1971) Zbl0213.25402MR0290354
- Matumoto T., On --complexes and a theorem of J.H.C. Whitehead, J. Fac. Sci. Univ. Tokyo, Sect. I, 18 (1971), 363-74. (1971) MR0345103
- May J. P., The homotopical foundations of algebraic topology, Mimeographed notes, University of Chicago.
- Milnor J., On space having the homotopy type of a -complex, Trans. Amer. Math. Soc. 90 (1959), 272-280. (1959) MR0100267
- Morita K., 10.4064/fm-87-1-31-52, Fund. Math. 87(1975), 31-52. (1975) Zbl0336.55003MR0362264DOI10.4064/fm-87-1-31-52
- Murayama M., On -’s and their -homotopy types, Osaka J. Math. 20 (1983), 479-512. (1983) Zbl0531.57034MR0718960
- Palais R. S., The classification of -spaces, Memoirs of the Amer. Math. Soc., Number 36 (1960). (1960) Zbl0119.38403MR0177401
- Spanier E. H., Algebraic Topology, Springer-Verlag. Zbl0810.55001MR0666554
- Waner S., Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc. 258(1980), 351-368. (1980) Zbl0444.55010MR0558178
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.