On bijectivity of the canonical transformation [ β G X ; Y ] G [ X ; Y ] G

Vojtěch Bartík; Martin Markl

Czechoslovak Mathematical Journal (1988)

  • Volume: 38, Issue: 4, page 682-700
  • ISSN: 0011-4642

How to cite

top

Bartík, Vojtěch, and Markl, Martin. "On bijectivity of the canonical transformation $[\beta _G X;Y]_G \rightarrow [X;Y]_G$." Czechoslovak Mathematical Journal 38.4 (1988): 682-700. <http://eudml.org/doc/13742>.

@article{Bartík1988,
author = {Bartík, Vojtěch, Markl, Martin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Čech-Stone compactification; completely regular G-spaces; compact Lie group; G-homotopy classes of G-maps; Čech-Stone G-compactification},
language = {eng},
number = {4},
pages = {682-700},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On bijectivity of the canonical transformation $[\beta _G X;Y]_G \rightarrow [X;Y]_G$},
url = {http://eudml.org/doc/13742},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Bartík, Vojtěch
AU - Markl, Martin
TI - On bijectivity of the canonical transformation $[\beta _G X;Y]_G \rightarrow [X;Y]_G$
JO - Czechoslovak Mathematical Journal
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 4
SP - 682
EP - 700
LA - eng
KW - Čech-Stone compactification; completely regular G-spaces; compact Lie group; G-homotopy classes of G-maps; Čech-Stone G-compactification
UR - http://eudml.org/doc/13742
ER -

References

top
  1. Bartík v., General bridge-mapping theorem, Comment. Math. Univ. Carolinae 16, 4 (1975), 693-698 (Russian). (1975) MR0391092
  2. Bartík V., 10.1093/qmath/29.1.77, Quart. J. Math. Oxford (2), 29 (1978), 77-91. (1978) MR0493853DOI10.1093/qmath/29.1.77
  3. Bartík V., On the bijectivity of the canonical transformation [ β G X ; Y ] G [ X ; Y ] G , Abstracts of 4th International Conference ,,Topology and its Applications", Dubrovnik, Sept. 30-Oct. 5 1985, Zagreb 1985. (1985) 
  4. Borel A., Seminar on transformation groups, Annals of Math. Studies 46, Princeton University Press, 1960. (1960) Zbl0091.37202MR0116341
  5. Bredon G. E., Introduction to compact transformation groups, New York, 1972. (1972) Zbl0246.57017MR0413144
  6. Colder A., Siegel J., 10.1090/S0002-9947-1978-0458416-6, Trans. Amer. Math. Soc. 235 (1978), 245-270. (1978) MR0458416DOI10.1090/S0002-9947-1978-0458416-6
  7. Calder A., Siegel J., 10.1090/S0002-9939-1980-0550515-8, Proc. Amer. Math. Soc. 78 (1980), 288-290. (1980) Zbl0452.55007MR0550515DOI10.1090/S0002-9939-1980-0550515-8
  8. Dold A., Lectures on Algebraic Topology, Springer-Verlag 1972. (1972) Zbl0234.55001MR0415602
  9. Markl M., On the G -spaces having an 𝒮 - G - CW -approximation by a G - CW -complex of finite G -type, Comment. Math. Univ. Carolinae 24, 3 (1983). (1983) MR0730149
  10. Matumoto T., Equivariant K -theory and Fredholm operators, J. Fac. Sci. Univ. Tokyo, Sect. IA, 18(1971), 109-112. (1971) Zbl0213.25402MR0290354
  11. Matumoto T., On G - CW -complexes and a theorem of J.H.C. Whitehead, J. Fac. Sci. Univ. Tokyo, Sect. I, 18 (1971), 363-74. (1971) MR0345103
  12. May J. P., The homotopical foundations of algebraic topology, Mimeographed notes, University of Chicago. 
  13. Milnor J., On space having the homotopy type of a C W -complex, Trans. Amer. Math. Soc. 90 (1959), 272-280. (1959) MR0100267
  14. Morita K., 10.4064/fm-87-1-31-52, Fund. Math. 87(1975), 31-52. (1975) Zbl0336.55003MR0362264DOI10.4064/fm-87-1-31-52
  15. Murayama M., On G - A N R ’s and their G -homotopy types, Osaka J. Math. 20 (1983), 479-512. (1983) Zbl0531.57034MR0718960
  16. Palais R. S., The classification of G -spaces, Memoirs of the Amer. Math. Soc., Number 36 (1960). (1960) Zbl0119.38403MR0177401
  17. Spanier E. H., Algebraic Topology, Springer-Verlag. Zbl0810.55001MR0666554
  18. Waner S., Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc. 258(1980), 351-368. (1980) Zbl0444.55010MR0558178

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.