Prime PI-rights in which finitely generated right ideals are principal.

Joachim Gräter

Forum mathematicum (1992)

  • Volume: 4, Issue: 5, page 447-464
  • ISSN: 0933-7741; 1435-5337/e

How to cite

top

Gräter, Joachim. "Prime PI-rights in which finitely generated right ideals are principal.." Forum mathematicum 4.5 (1992): 447-464. <http://eudml.org/doc/141687>.

@article{Gräter1992,
author = {Gräter, Joachim},
journal = {Forum mathematicum},
keywords = {Bezout rings; Dubrovin valuation rings; regular elements; simple Artinian ring; Ore set; prime Goldie; quotient ring; central simple algebra; prime ideals; semilocal; maximal ideals; intersection property; approximation theorem; integrality; semilocal Bezout orders; invertibility; finitely generated ideals},
number = {5},
pages = {447-464},
title = {Prime PI-rights in which finitely generated right ideals are principal.},
url = {http://eudml.org/doc/141687},
volume = {4},
year = {1992},
}

TY - JOUR
AU - Gräter, Joachim
TI - Prime PI-rights in which finitely generated right ideals are principal.
JO - Forum mathematicum
PY - 1992
VL - 4
IS - 5
SP - 447
EP - 464
KW - Bezout rings; Dubrovin valuation rings; regular elements; simple Artinian ring; Ore set; prime Goldie; quotient ring; central simple algebra; prime ideals; semilocal; maximal ideals; intersection property; approximation theorem; integrality; semilocal Bezout orders; invertibility; finitely generated ideals
UR - http://eudml.org/doc/141687
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.