# A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.

A.M. Bloch; H. Flaschka; T. Ratiu

Inventiones mathematicae (1993)

- Volume: 113, Issue: 3, page 511-530
- ISSN: 0020-9910; 1432-1297/e

## Access Full Article

top## How to cite

topBloch, A.M., Flaschka, H., and Ratiu, T.. "A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.." Inventiones mathematicae 113.3 (1993): 511-530. <http://eudml.org/doc/144135>.

@article{Bloch1993,

author = {Bloch, A.M., Flaschka, H., Ratiu, T.},

journal = {Inventiones mathematicae},

keywords = {infinite-dimensional Lie groups; approximation of measure-preserving transformations; eigenvalues; area-preserving diffeomorphisms; divergence-free (Hamiltonian) vector fields; Schur-Horn-Kostant theorem; measure-preserving diffeomorphism},

number = {3},

pages = {511-530},

title = {A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.},

url = {http://eudml.org/doc/144135},

volume = {113},

year = {1993},

}

TY - JOUR

AU - Bloch, A.M.

AU - Flaschka, H.

AU - Ratiu, T.

TI - A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.

JO - Inventiones mathematicae

PY - 1993

VL - 113

IS - 3

SP - 511

EP - 530

KW - infinite-dimensional Lie groups; approximation of measure-preserving transformations; eigenvalues; area-preserving diffeomorphisms; divergence-free (Hamiltonian) vector fields; Schur-Horn-Kostant theorem; measure-preserving diffeomorphism

UR - http://eudml.org/doc/144135

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.