Two minimax-type methods for solving systems of nonlinear equations
Aplikace matematiky (1969)
- Volume: 14, Issue: 1, page 29-53
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHrouda, Jaroslav. "Two minimax-type methods for solving systems of nonlinear equations." Aplikace matematiky 14.1 (1969): 29-53. <http://eudml.org/doc/14576>.
@article{Hrouda1969,
abstract = {The system of equations $h_i(x)=0\ (i=1,\ldots ,r;\ x\in E_n)$ is solved by means of iterative methods of minimization of the functions A) $max_i\ h_i(x)$ under the conditions $h_i(x)\ge 0$, B) $max_i\ \left|h_i(x)\right|$. These methods are derived from the Zoutendijk’s method of feasible directions. A good deal of attention is paid to their numerical aspects.},
author = {Hrouda, Jaroslav},
journal = {Aplikace matematiky},
keywords = {operations research},
language = {eng},
number = {1},
pages = {29-53},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two minimax-type methods for solving systems of nonlinear equations},
url = {http://eudml.org/doc/14576},
volume = {14},
year = {1969},
}
TY - JOUR
AU - Hrouda, Jaroslav
TI - Two minimax-type methods for solving systems of nonlinear equations
JO - Aplikace matematiky
PY - 1969
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 14
IS - 1
SP - 29
EP - 53
AB - The system of equations $h_i(x)=0\ (i=1,\ldots ,r;\ x\in E_n)$ is solved by means of iterative methods of minimization of the functions A) $max_i\ h_i(x)$ under the conditions $h_i(x)\ge 0$, B) $max_i\ \left|h_i(x)\right|$. These methods are derived from the Zoutendijk’s method of feasible directions. A good deal of attention is paid to their numerical aspects.
LA - eng
KW - operations research
UR - http://eudml.org/doc/14576
ER -
References
top- Zoutendijk G., Methods of feasible directions;, Elsevier, Amsterdam 1960. (1960) Zbl0097.35408
- Altman M., A feasible direction method for solving the non-linear programming problem;, Bull. Acad. Polon. Sci., math., astr., phys. 12 (1964), No 1, 43-50. (1964) Zbl0127.36705MR0165665
- Зуховицкий С. И., Поляк Р. А., Примак M. E., Алгорифм для решения задачи выпуклого чебышевского приближения;, ДАН СССР 151 (1963), № 1, 27-30. (1963) Zbl1145.93303
- Altman M., Stationary points in non-linear programming;, Bull. Acad. Polon. Sci., math., astr., phys. 12 (1964), No 1, 29-35. (1964) Zbl0123.37302MR0164810
- Hrouda J., On a classification of stationary points in nonlinear programming;, this issue. Zbl0167.18302
- Hadley G., Nonlinear and dynamic programming;, Addison-Wesley, Reading 1964. (1964) Zbl0179.24601MR0173543
- Зуховицкий С. И., Авдеева Л. И., Линейное и выпуклое программирование;, Наука, Москва 1964. (1964) Zbl1117.65300
- Юдин Д. Б., Гольштейн E. Г., Линейное программирование;, Физматгиз, Москва 1963. (1963) Zbl1145.93303
- Kelley J. E., The cutting-plane method for solving convex programs;, J. SIAM 8 (1960), No 4, 703-712. (1960) MR0118538
- Загускин В. Л., Справочник по численным методам решения алгебраических и трансцендентных уравнений;, Физматгиз, Москва 1960. (1960) Zbl1004.90500
- Фаддеев Д. К., Фаддеева В. H., Вычислительные методы линейной алгебры;, Физматгиз, Москва 1963. (1963) Zbl1145.93303
- Goldstein A. A., 10.1007/BF01386306, Numer. Math. 4 (1962), No 2, 146- 150. (1962) Zbl0105.10201MR0141222DOI10.1007/BF01386306
- Яковлев M. H., О некоторых методах решения нелинейных уравнений;, Труды матем. инст. В. А. Стеклова 84, Наука, Москва 1965, 8-40. (1965) Zbl1099.01519
- Hrouda J., Řešení soustav nelineárních rovnic;, Závěrečná zpráva o úkolu R7.3/66, VÚTECHP, Praha 1966, 6-15. (1966)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.