Two minimax-type methods for solving systems of nonlinear equations

Jaroslav Hrouda

Aplikace matematiky (1969)

  • Volume: 14, Issue: 1, page 29-53
  • ISSN: 0862-7940

Abstract

top
The system of equations h i ( x ) = 0 ( i = 1 , ... , r ; x E n ) is solved by means of iterative methods of minimization of the functions A) m a x i h i ( x ) under the conditions h i ( x ) 0 , B) m a x i h i ( x ) . These methods are derived from the Zoutendijk’s method of feasible directions. A good deal of attention is paid to their numerical aspects.

How to cite

top

Hrouda, Jaroslav. "Two minimax-type methods for solving systems of nonlinear equations." Aplikace matematiky 14.1 (1969): 29-53. <http://eudml.org/doc/14576>.

@article{Hrouda1969,
abstract = {The system of equations $h_i(x)=0\ (i=1,\ldots ,r;\ x\in E_n)$ is solved by means of iterative methods of minimization of the functions A) $max_i\ h_i(x)$ under the conditions $h_i(x)\ge 0$, B) $max_i\ \left|h_i(x)\right|$. These methods are derived from the Zoutendijk’s method of feasible directions. A good deal of attention is paid to their numerical aspects.},
author = {Hrouda, Jaroslav},
journal = {Aplikace matematiky},
keywords = {operations research},
language = {eng},
number = {1},
pages = {29-53},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two minimax-type methods for solving systems of nonlinear equations},
url = {http://eudml.org/doc/14576},
volume = {14},
year = {1969},
}

TY - JOUR
AU - Hrouda, Jaroslav
TI - Two minimax-type methods for solving systems of nonlinear equations
JO - Aplikace matematiky
PY - 1969
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 14
IS - 1
SP - 29
EP - 53
AB - The system of equations $h_i(x)=0\ (i=1,\ldots ,r;\ x\in E_n)$ is solved by means of iterative methods of minimization of the functions A) $max_i\ h_i(x)$ under the conditions $h_i(x)\ge 0$, B) $max_i\ \left|h_i(x)\right|$. These methods are derived from the Zoutendijk’s method of feasible directions. A good deal of attention is paid to their numerical aspects.
LA - eng
KW - operations research
UR - http://eudml.org/doc/14576
ER -

References

top
  1. Zoutendijk G., Methods of feasible directions;, Elsevier, Amsterdam 1960. (1960) Zbl0097.35408
  2. Altman M., A feasible direction method for solving the non-linear programming problem;, Bull. Acad. Polon. Sci., math., astr., phys. 12 (1964), No 1, 43-50. (1964) Zbl0127.36705MR0165665
  3. Зуховицкий С. И., Поляк Р. А., Примак M. E., Алгорифм для решения задачи выпуклого чебышевского приближения;, ДАН СССР 151 (1963), № 1, 27-30. (1963) Zbl1145.93303
  4. Altman M., Stationary points in non-linear programming;, Bull. Acad. Polon. Sci., math., astr., phys. 12 (1964), No 1, 29-35. (1964) Zbl0123.37302MR0164810
  5. Hrouda J., On a classification of stationary points in nonlinear programming;, this issue. Zbl0167.18302
  6. Hadley G., Nonlinear and dynamic programming;, Addison-Wesley, Reading 1964. (1964) Zbl0179.24601MR0173543
  7. Зуховицкий С. И., Авдеева Л. И., Линейное и выпуклое программирование;, Наука, Москва 1964. (1964) Zbl1117.65300
  8. Юдин Д. Б., Гольштейн E. Г., Линейное программирование;, Физматгиз, Москва 1963. (1963) Zbl1145.93303
  9. Kelley J. E., The cutting-plane method for solving convex programs;, J. SIAM 8 (1960), No 4, 703-712. (1960) Zbl0098.12104MR0118538
  10. Загускин В. Л., Справочник по численным методам решения алгебраических и трансцендентных уравнений;, Физматгиз, Москва 1960. (1960) Zbl1004.90500
  11. Фаддеев Д. К., Фаддеева В. H., Вычислительные методы линейной алгебры;, Физматгиз, Москва 1963. (1963) Zbl1145.93303
  12. Goldstein A. A., 10.1007/BF01386306, Numer. Math. 4 (1962), No 2, 146- 150. (1962) Zbl0105.10201MR0141222DOI10.1007/BF01386306
  13. Яковлев M. H., О некоторых методах решения нелинейных уравнений;, Труды матем. инст. В. А. Стеклова 84, Наука, Москва 1965, 8-40. (1965) Zbl1099.01519
  14. Hrouda J., Řešení soustav nelineárních rovnic;, Závěrečná zpráva o úkolu R7.3/66, VÚTECHP, Praha 1966, 6-15. (1966) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.