A transformation of a beta-distributed random variate as a result of minutized experimental method

Miloš Pavlík

Aplikace matematiky (1970)

  • Volume: 15, Issue: 2, page 97-105
  • ISSN: 0862-7940


The paper deals with the distribution of a random variate resulting from a transformation due to some cases of changing the qualitative experiment into a quantitative one. Suppose that upon the qualitative (quantitative) experiment a random variate Y ( X ) is defined having the alternative (Poisson) distribution with parameter Q ( Λ = - I n ( 1 - Q ) ) ; in the paper the distribution of Λ and the marginal one of X are dealt with, if Q is a beta-distributed random variate. Frequency and characteristic functions and formulae for moments and cumulants are derived and methods are discussed of estimating both parameter values and the actual value of Λ from experimental data.

How to cite


Pavlík, Miloš. "Transformace náhodné veličiny s rozložením beta v důsledku zjemnění experimentální metody." Aplikace matematiky 15.2 (1970): 97-105. <http://eudml.org/doc/14635>.

author = {Pavlík, Miloš},
journal = {Aplikace matematiky},
keywords = {statistics},
language = {cze},
number = {2},
pages = {97-105},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Transformace náhodné veličiny s rozložením beta v důsledku zjemnění experimentální metody},
url = {http://eudml.org/doc/14635},
volume = {15},
year = {1970},

AU - Pavlík, Miloš
TI - Transformace náhodné veličiny s rozložením beta v důsledku zjemnění experimentální metody
JO - Aplikace matematiky
PY - 1970
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 15
IS - 2
SP - 97
EP - 105
LA - cze
KW - statistics
UR - http://eudml.org/doc/14635
ER -


  1. Fisz M., Wahrscheinlichkeitsrechnung und mathematische Statistik, Z polštiny přel. J. Wloka. Berlin, VEB Deutscher Verlag der Wissenschaften, 1966. (1966) Zbl0216.46101
  2. Janko J., Statistické tabulky, Praha, NČSAV, 1958. (1958) MR0150924
  3. Pearson K., Tables for the incomplete Γ -function, London, Cambridge University Press, 1922. Citováno podle 1. (1922) Zbl48.0626.03
  4. Слуцкий E. E., Таблицы для вычисления непольной гамма-функции и функции вероятности, Москва,Издат. AHCCP, 1950. Cit. podle 5. (1950) Zbl1157.76305
  5. Šor J. В., Statistické metody analýzy a kontroly jakosti a spolehlivosti, Z ruštiny přel. L. Kubát. Praha, SNTL, 1965. (1965) 
  6. Таблицы логарифмической производной гамма-функции и её производных в комплексной области, Москва, Вычислительный центр AHCCP, 1965. (1965) Zbl1099.01519

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.