A parallel projection method for linear algebraic systems

Fridrich Sloboda

Aplikace matematiky (1978)

  • Volume: 23, Issue: 3, page 185-198
  • ISSN: 0862-7940

Abstract

top
A direct projection method for solving systems of linear algebraic equations is described. The algorithm is equivalent to the algorithm for minimization of the corresponding quadratic function and can be generalized for the minimization of a strictly convex function.

How to cite

top

Sloboda, Fridrich. "A parallel projection method for linear algebraic systems." Aplikace matematiky 23.3 (1978): 185-198. <http://eudml.org/doc/15049>.

@article{Sloboda1978,
abstract = {A direct projection method for solving systems of linear algebraic equations is described. The algorithm is equivalent to the algorithm for minimization of the corresponding quadratic function and can be generalized for the minimization of a strictly convex function.},
author = {Sloboda, Fridrich},
journal = {Aplikace matematiky},
keywords = {projection method; linear algebraic equations; elimination; orthogonalization; conjugate direction methodds; nonlinear equations; iterative methods for linear systems; Projection Method; Linear Algebraic Equations; Elimination; Orthogonalization; Conjugate Direction Methodds; Nonlinear Equations; Iterative Methods for Linear Systems},
language = {eng},
number = {3},
pages = {185-198},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A parallel projection method for linear algebraic systems},
url = {http://eudml.org/doc/15049},
volume = {23},
year = {1978},
}

TY - JOUR
AU - Sloboda, Fridrich
TI - A parallel projection method for linear algebraic systems
JO - Aplikace matematiky
PY - 1978
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 23
IS - 3
SP - 185
EP - 198
AB - A direct projection method for solving systems of linear algebraic equations is described. The algorithm is equivalent to the algorithm for minimization of the corresponding quadratic function and can be generalized for the minimization of a strictly convex function.
LA - eng
KW - projection method; linear algebraic equations; elimination; orthogonalization; conjugate direction methodds; nonlinear equations; iterative methods for linear systems; Projection Method; Linear Algebraic Equations; Elimination; Orthogonalization; Conjugate Direction Methodds; Nonlinear Equations; Iterative Methods for Linear Systems
UR - http://eudml.org/doc/15049
ER -

References

top
  1. R. P. Brent, Algorithms for minimization without derivatives, Prentice-Hall, Englewood Cliffs, New Jersey, (1973). (1973) Zbl0245.65032MR0339493
  2. D. Chazan W. L. Miranker, A nongradient and parallel algorithm for unconstrained minimization, SIAM J. Control, 2 (1970), 207-217. (1970) MR0275637
  3. E. Durand, Solution numérique des equations algebraiques II, Masson, Paris, (1961). (1961) 
  4. D. K. Faddeev V. N. Faddeeva, Computational methods of linear algebra, Fizmatgiz, Moscow, (1960), (Russian). (1960) 
  5. L. Fox H. D. Huskey J. D. Wilkinson, 10.1093/qjmam/1.1.149, Quart. J. Mech. Appl. Math., 1 (1948), 149-173. (1948) MR0026421DOI10.1093/qjmam/1.1.149
  6. N. Gastinel, Analyse numérique linéaire, Hermann, Paris, (1966). (1966) Zbl0151.21202MR0201053
  7. D. Goldfarb, Modification methods for inverting matrices and solving systems of linear algebraic equations, Math. of Соmр., 26 (1972), 829-852. (1972) Zbl0268.65026MR0317527
  8. M. R. Hestenes E. Stiefel, 10.6028/jres.049.044, J. Res. Nat. Bur. Standards, 49 (1952), 409-436. (1952) MR0060307DOI10.6028/jres.049.044
  9. A. S. Householder F. L. Bauer, 10.1007/BF01386209, Numer. Math., 2 (1960), 55-59. (1960) MR0116464DOI10.1007/BF01386209
  10. S. Kaczmarz, Angenäherte Auflösung von Systemen linearen Gleichungen, Bull. Acad. Polon. Sciences et Lettres, A, (1937), 355-357. (1937) 
  11. J. Morris, 10.1080/14786444608561331, Philos. Mag., 37 (1946), 106-120. (1946) Zbl0061.27101MR0018423DOI10.1080/14786444608561331
  12. M. J. D. Powell, An efficient method for finding minimum of a function of several variables without calculating derivatives, Соmр. J., 7 (1964), 155 -162. (1964) MR0187376
  13. E. W. Purcell, 10.1002/sapm1953321180, J. Math. and Phys., 32 (1954), 180-183. (1954) MR0059065DOI10.1002/sapm1953321180
  14. F. Sloboda, Parallel method of conjugate directions for minimization, Apl. mat., 20 (1975), 436-446. (1975) Zbl0326.90050MR0395830
  15. F. Sloboda, Nonlinear iterative methods and parallel computation, Apl. mat., 21 (1976), 252-262. (1976) Zbl0356.65057MR0426411
  16. F. Sloboda, A conjugate directions method and its application, Proc. of the 8th IFIP Conference on Optimization Techniques, Würzburg, (1977), to appear in Springer Verlag. (1977) MR0483450
  17. G. Stewart, 10.1007/BF01436383, Numer. Math., 21 (1973), 285-297. (1973) Zbl0253.65017MR0341837DOI10.1007/BF01436383
  18. P. Václavík, Parallel algorithms for solving 3-diagonal systems of linear equations, (Slovak), Thesis, Fac. of Sc., Komenský Univ., Bratislava (1974). (1974) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.