A deflation formula for tridiagonal matrices
Aplikace matematiky (1980)
- Volume: 25, Issue: 5, page 348-357
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFiedler, Miroslav. "A deflation formula for tridiagonal matrices." Aplikace matematiky 25.5 (1980): 348-357. <http://eudml.org/doc/15158>.
@article{Fiedler1980,
	abstract = {An explicit formula for the deflation of a tridiagonal matrix is presented. The resulting matrix is again tridiagonal.},
	author = {Fiedler, Miroslav},
	journal = {Aplikace matematiky},
	keywords = {deflation formula; tridiagonal matrices; deflation formula; tridiagonal matrices},
	language = {eng},
	number = {5},
	pages = {348-357},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {A deflation formula for tridiagonal matrices},
	url = {http://eudml.org/doc/15158},
	volume = {25},
	year = {1980},
}
TY  - JOUR
AU  - Fiedler, Miroslav
TI  - A deflation formula for tridiagonal matrices
JO  - Aplikace matematiky
PY  - 1980
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 25
IS  - 5
SP  - 348
EP  - 357
AB  - An explicit formula for the deflation of a tridiagonal matrix is presented. The resulting matrix is again tridiagonal.
LA  - eng
KW  - deflation formula; tridiagonal matrices; deflation formula; tridiagonal matrices
UR  - http://eudml.org/doc/15158
ER  - 
References
top- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford 1965. (1965) Zbl0258.65037MR0184422
- P. A. Businger, 10.1007/BF01931807, BIT 11 (1971), 262-270. (1971) Zbl0226.65028MR0293828DOI10.1007/BF01931807
- W. Gander, Stationärer Quotienten-Differenzen Algorithmus. Prozedur qdstat, In: Numerische Prozeduren aus Nachlass und Lehre von Prof. Heinz Rutishauser. ISNM Vol. 33. Birkhäuser Verlag 1977. (1977) Zbl0358.65033MR0488607
- W. Jentzsch, Über Integralgleichungen mit positivem Kern, J. für Math. 141 (1912), 235 - 244. (1912)
- M. Fiedler, Vl. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czech. Math. J. 87 (1962), 382 - 400. (1962) MR0142565
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 