Some notes on the quasi-Newton methods

Masanori Ozawa; Hiroshi Yanai

Aplikace matematiky (1982)

  • Volume: 27, Issue: 6, page 433-445
  • ISSN: 0862-7940

Abstract

top
A survey note whose aim is to establish the heuristics and natural relations in a class of Quasi-Newton methods in optimization problems. It is shown that a particular algorithm of the class is specified by characcterizing some parameters (scalars and matrices) in a general solution of a matrix equation.

How to cite

top

Ozawa, Masanori, and Yanai, Hiroshi. "Some notes on the quasi-Newton methods." Aplikace matematiky 27.6 (1982): 433-445. <http://eudml.org/doc/15264>.

@article{Ozawa1982,
abstract = {A survey note whose aim is to establish the heuristics and natural relations in a class of Quasi-Newton methods in optimization problems. It is shown that a particular algorithm of the class is specified by characcterizing some parameters (scalars and matrices) in a general solution of a matrix equation.},
author = {Ozawa, Masanori, Yanai, Hiroshi},
journal = {Aplikace matematiky},
keywords = {quasi-Newton methods; unconstrained optimization; conjugate directions; update formulas; quasi-Newton methods; unconstrained optimization; conjugate directions; update formulas},
language = {eng},
number = {6},
pages = {433-445},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some notes on the quasi-Newton methods},
url = {http://eudml.org/doc/15264},
volume = {27},
year = {1982},
}

TY - JOUR
AU - Ozawa, Masanori
AU - Yanai, Hiroshi
TI - Some notes on the quasi-Newton methods
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 6
SP - 433
EP - 445
AB - A survey note whose aim is to establish the heuristics and natural relations in a class of Quasi-Newton methods in optimization problems. It is shown that a particular algorithm of the class is specified by characcterizing some parameters (scalars and matrices) in a general solution of a matrix equation.
LA - eng
KW - quasi-Newton methods; unconstrained optimization; conjugate directions; update formulas; quasi-Newton methods; unconstrained optimization; conjugate directions; update formulas
UR - http://eudml.org/doc/15264
ER -

References

top
  1. C. G. Broyden, 10.1090/S0025-5718-1967-0224273-2, Mathematics of Computation, Vol. 21, pp. 368 - 381, (1967). (1967) MR0224273DOI10.1090/S0025-5718-1967-0224273-2
  2. C. G. Broyden, The Convergence of a Class of Double-Rank Minimisation Algorithms, Journal of the Institute of Mathematics and its Applications, Vol. 6, pp. 79-90, 222-231 (1970). (1970) MR0433870
  3. W. C. Davidon, Variable Metric Method for Minimization, Argonne National Laboratory Rept. ANL-5990 (Rev.) (1959). (1959) 
  4. W. C. Davidon, 10.1007/BF01681328, Mathematical Programming, Vol. 9, pp. 1 - 30, (1975). (1975) Zbl0328.90055MR0383741DOI10.1007/BF01681328
  5. J. E. Dennis J. J. Moré, 10.1137/1019005, SIAM Review, Vol. 19, pp. 46-89, (1977). (19,) MR0445812DOI10.1137/1019005
  6. R. Fletcher, 10.1093/comjnl/13.3.317, The Computer Journal, Vol. 13, pp. 317-322, (1970). (1970) DOI10.1093/comjnl/13.3.317
  7. R. Fletcher M. J. D. Powell, 10.1093/comjnl/6.2.163, The Computer Journal, Vol. 6, pp. 163-168, (1963). (1963) MR0152116DOI10.1093/comjnl/6.2.163
  8. R. Fletcher C. M. Reeves, 10.1093/comjnl/7.2.149, The Computer Journal, Vol. 7, pp. 149-154, (1964). (1964) MR0187375DOI10.1093/comjnl/7.2.149
  9. D. Goldfarb, 10.1090/S0025-5718-1970-0258249-6, Mathematics of Computation, Vol. 24, pp. 23 - 26, (1970). (1970) Zbl0196.18002MR0258249DOI10.1090/S0025-5718-1970-0258249-6
  10. H. Y. Huang, 10.1007/BF00927440, Journal of Optimization Theory and Applications, Vol. 5, pp. 405 - 423, (1970). (1970) MR0288939DOI10.1007/BF00927440
  11. J. D. Pearson, 10.1093/comjnl/12.2.171, The Computer Journal, Vol. 12, pp. 171-179, (1969). (1969) Zbl0207.17301MR0242355DOI10.1093/comjnl/12.2.171
  12. M. J. D. Powell, 10.1093/comjnl/7.2.155, The Computer Journal, Vol. 7, pp. 155-162, (1964). (1964) MR0187376DOI10.1093/comjnl/7.2.155
  13. D. F. Shanno, 10.1090/S0025-5718-1970-0274029-X, Mathematics of Computation, Vol. 24, pp. 647-657, (1970). (1970) MR0274029DOI10.1090/S0025-5718-1970-0274029-X
  14. H. Yanai, On Conjugate Direction Methods, Seminar Report Vol. 190, Institute for Mathematical Sciences, Kyoto Univ., (1973). (In Japanese) (190,) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.