Extension of the G -stability concept to the class of the linear multistep block methods

Reiner Vanselow

Aplikace matematiky (1983)

  • Volume: 28, Issue: 1, page 9-20
  • ISSN: 0862-7940

Abstract

top
In der vorliegenden Arbeit wird der G -Stabilitätsbegriff von Dahlquist, der die Grundlage für Stabilitätsuntersuchungen bei linearen Mehrschrittverfahren zur Lösung nichtlinearet Anfangswertaufgaben bildet, auf die Klasse der linearen Mehrschrittblockverfahren übertragen. Es wird nachgewiesen, das Blockverfahren, die in diesem Sinne stabil sind, höchstens die Konsistenzordnung 2 haben können.

How to cite

top

Vanselow, Reiner. "Erweiterung des $G$-Stabilitätsbegriffes auf die Klasse der linearen Mehrschrittblockverfahren.." Aplikace matematiky 28.1 (1983): 9-20. <http://eudml.org/doc/15270>.

@article{Vanselow1983,
author = {Vanselow, Reiner},
journal = {Aplikace matematiky},
keywords = {$G$-stability; linear multistep; block methods; order of consistency; nonlinear problems; G-stability; linear multistep; block methods; order of consistency; nonlinear problems},
language = {ger},
number = {1},
pages = {9-20},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Erweiterung des $G$-Stabilitätsbegriffes auf die Klasse der linearen Mehrschrittblockverfahren.},
url = {http://eudml.org/doc/15270},
volume = {28},
year = {1983},
}

TY - JOUR
AU - Vanselow, Reiner
TI - Erweiterung des $G$-Stabilitätsbegriffes auf die Klasse der linearen Mehrschrittblockverfahren.
JO - Aplikace matematiky
PY - 1983
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 28
IS - 1
SP - 9
EP - 20
LA - ger
KW - $G$-stability; linear multistep; block methods; order of consistency; nonlinear problems; G-stability; linear multistep; block methods; order of consistency; nonlinear problems
UR - http://eudml.org/doc/15270
ER -

References

top
  1. G. G. Dahlquist, 10.1007/BF01963532, BIT 3 (1963), 27-43. (1963) Zbl0123.11703MR0170477DOI10.1007/BF01963532
  2. G. G. Dahlquist, On stability and error analysis for stiff non-linear problems, Part I, Report TRITA-NA-7508, 1975. (1975) 
  3. G. G. Dahlquist, 10.1007/BFb0080115, Pro. Conf. Numerical Analysis, Dundee 1975, Springer Lecture Notes in Mathematics, 506 (1975), 60-74. (1975) MR0448898DOI10.1007/BFb0080115
  4. G. G. Dahlquist, On the relation of G-stability to other stability concepts for linear multistep methods, Topics in Numerical Analysis III, 67-80, ed. J. H. Miller, Acad. Press, London, 1977. (1977) Zbl0438.65073
  5. G. G. Dahlquist, G-stability is equivalent to A-stability, Report TRITA-NA-7805, 1978. (1978) Zbl0413.65057
  6. M. Práger J. Taufer E. Vitásek, Overimplicit methods for the solution of evolution problems, Acta Universitatis Carolinae - Mathematica et Physica 1 - 2 (1974), 125-133. (1974) MR0391515
  7. M. Práger J. Taufer E. Vitásek, Overimplicit multistep methods, Apl. mat. 18 (1973), 399-421. (1973) MR0366041
  8. H. A. Watts, A-stable block implicit one-step methods, Sandia Laboratories, Albuquerque, Applied Mathematics, 1971. (1971) 
  9. H. A. Watts L. F. Shampine, 10.1007/BF01932819, BIT 12 (1972), 252-266. (1972) MR0307483DOI10.1007/BF01932819
  10. R. Vanselow, Stabilitäts- und Fehleruntersuchungen bei numerischen Verfahren zur Lösung steifer nichtlinearer Anfangswertprobleme, Diplomarbeit, TU Dresden, 1978/79. (1978) 
  11. R. Vanselow, Explizite Konstruktion von linearen Mehrschrittblockverfahren, Apl. Mat. 28 (1983), 1-8. (1983) Zbl0516.65059MR0684706

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.