Note on type II counter problem

Anatolij Dvurečenskij; Genadij A. Ososkov

Aplikace matematiky (1984)

  • Volume: 29, Issue: 4, page 237-249
  • ISSN: 0862-7940

Abstract

top
In the paper the authors investigate the explicit form of the joint Laplace transform of the distances between two subsequent moments f particle registrations by the Type II counter (the counter with prolonged dead time), in the general case, and the generating function of the number of particles arriving during the dead time. They give explicit solutions to the complicated integral equations obtained by L. Takács and R. Pyke, respectively. Moreover, they study the geometric behaviour of the distribution of the latter above mentioned random variable, and make some remarks on the Type II counter and the case of registration of m types of particles.

How to cite

top

Dvurečenskij, Anatolij, and Ososkov, Genadij A.. "Note on type II counter problem." Aplikace matematiky 29.4 (1984): 237-249. <http://eudml.org/doc/15354>.

@article{Dvurečenskij1984,
abstract = {In the paper the authors investigate the explicit form of the joint Laplace transform of the distances between two subsequent moments f particle registrations by the Type II counter (the counter with prolonged dead time), in the general case, and the generating function of the number of particles arriving during the dead time. They give explicit solutions to the complicated integral equations obtained by L. Takács and R. Pyke, respectively. Moreover, they study the geometric behaviour of the distribution of the latter above mentioned random variable, and make some remarks on the Type II counter and the case of registration of $m$ types of particles.},
author = {Dvurečenskij, Anatolij, Ososkov, Genadij A.},
journal = {Aplikace matematiky},
keywords = {counter theory; Laplace transform; generating function; dead time; counter theory; Laplace transform; generating function; dead time},
language = {eng},
number = {4},
pages = {237-249},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Note on type II counter problem},
url = {http://eudml.org/doc/15354},
volume = {29},
year = {1984},
}

TY - JOUR
AU - Dvurečenskij, Anatolij
AU - Ososkov, Genadij A.
TI - Note on type II counter problem
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 4
SP - 237
EP - 249
AB - In the paper the authors investigate the explicit form of the joint Laplace transform of the distances between two subsequent moments f particle registrations by the Type II counter (the counter with prolonged dead time), in the general case, and the generating function of the number of particles arriving during the dead time. They give explicit solutions to the complicated integral equations obtained by L. Takács and R. Pyke, respectively. Moreover, they study the geometric behaviour of the distribution of the latter above mentioned random variable, and make some remarks on the Type II counter and the case of registration of $m$ types of particles.
LA - eng
KW - counter theory; Laplace transform; generating function; dead time; counter theory; Laplace transform; generating function; dead time
UR - http://eudml.org/doc/15354
ER -

References

top
  1. Л. Г. Афанасьева И. В. Михайлова, Предельное распределение периода занятости в системах G / D / и M / G / в условиях большой загруски, в. кн. Материалы Всесоюзного симпозиума по статистике случайных процессов, изд. Киевского гос. ун-та, Киев (1973), 12-15. (1973) 
  2. Л. Г. Афанасьева И. В. Михайлова, О восстановлениии характеристик некоторых систем массового обслуживания по выходящему потоку, в кн. Труды мат. фак. ВГУ, вып. 9, изд. Воронежского гос. ун-та, Воронеж (1973), 132-138. (1973) Zbl1221.53041MR0436667
  3. Л. Г. Афанасьева И. В. Михайлова, О числе требований, обслуженных за период занятости, Изв. АН СССР, Тех. Кибернетика, (1978), 88-96. (1978) Zbl1234.93001
  4. G. E. Albert L. Nelson, Contribution to the statistical theory of counter data, Ann. Math. Stat., 24 (1953), 9-22. (1953) MR0053447
  5. R. Barlow, Applications of semi-Markov processes to counter problems, in: Studies in applied probability and management science, Stanford Univ. Press, Stanford, Calif., (1962), 34-62. (1962) MR0139205
  6. M. Berman, The covariance of two type II counters, J. Appl. Probab., 18 (1981), 782-787. (1981) Zbl0467.60053MR0621246
  7. А. Цвуреченский, др., Об оценке плотности следов в трековых камерах, ОИЯИ, 5-81-362, Дубна (1981) 1-14. (1981) Zbl1167.00300
  8. А. Двуреченский, др., О применении систем массового обслуживания с бесконечным числом каналов к некоторым задачам физике энергий, ОИЯИ, P 5-82-682 (1982). 1 - 4. (1982) Zbl1164.20358
  9. A. Dvurečenskij G. A. Ososkov, On a busy period of discretized G I / G I / queue, JINR, E5-82-855, Dubna (1982). (1982) 
  10. В. Феллер, Введение в теорию вероятностей и ее приложения, T. I., ,,Мир", Москва (1967). (1967) Zbl1103.35360
  11. В. И. Голъданский А. В. Куцешо, M И. Подгорецкий, Статистика отсчетов при регистрации ядерных частиц, ,,Физматгиз", Москва (1959). (1959) Zbl1234.81002
  12. R. L. Glückstern, Determination of bubble density, Nuclear. Instr. Meth. 45 (1966), 166-172. (1966) 
  13. А. И. Маркушевич, Краткий курс теории аналитических функций, ,,Наука", Москва (1978). (1978) Zbl1130.91322
  14. F. Pollaczek, Sur la théorie stochastique des compteurs électroniques, C. R. Acad. Sci. Paris, 238 (1954), 322-324. (1954) Zbl0055.12601MR0059508
  15. R. Pyke, 10.1214/aoms/1177706533, Ann. Math. Stat., 29 (1958), 737-754. (1958) Zbl0086.33702MR0099089DOI10.1214/aoms/1177706533
  16. R. Pyke, Markov renewal processes of zero order and their application to counter theory, in: Studies in Applied Probability and Management Science, Stanford Univ. Press, Stanford, Calif., (1962), 173-183. (1962) Zbl0116.36402MR0133889
  17. G. Sankaranarayanan, 10.1214/aoms/1177704866, Ann. Math. Stat., 32 (1961), 1271-1285. Correction, ibid 33 (1962), 1466. (1961) Zbl0111.33103MR0137175DOI10.1214/aoms/1177704866
  18. G. Sankaranarayanan, Theory of particle counters, Math. Student, 32 (1964), 29-38. (1964) MR0184307
  19. G. Sankaranarayanan C. Suyambulingom, 10.1007/BF02614253, Metrika, 18 (1971/72) 227-233. Correction, ibid 20 (1973), 245. (1971) MR0413307DOI10.1007/BF02614253
  20. R. M. Sekkapan, 10.1177/0008068319660405, Calcutta Statis. Assoc. Bull., 15 (1966), 169-174. (1966) MR0217904DOI10.1177/0008068319660405
  21. W. L. Smith, Renewal theory and its ramifications, J. Roy. Stat. Soc. B, 20 (1958), 243 - 284. (1958) Zbl0091.30101MR0099090
  22. L. Takács, 10.1007/BF02021269, Acta. Math. Acad. Sci. Hungar., 6 (1955), 81-99. (1955) MR0070887DOI10.1007/BF02021269
  23. L. Takács, 10.1017/S0305004100031480, Proc. Cambr. Phil. Soc., 52 (1956), 488-498. (1956) MR0081585DOI10.1017/S0305004100031480
  24. L. Takács, On the sequence of events, selected by a counter from a recurrent process of events, Teor. Verojat. i. Prim. 1 (1956), 90-102. (1956) MR0084219
  25. L. Takács, 10.1007/BF02025237, Acta Math. Sci. Acad. Hungar., 8 (1957), 127-138. (1957) MR0090168DOI10.1007/BF02025237
  26. L. Takács, 10.1214/aoms/1177706457, Ann. Math. Stat., 29 (1958), 1257-1263. (1958) MR0099717DOI10.1214/aoms/1177706457
  27. L. Takács, 10.1214/aoms/1177704969, Ann. Math. Stat., 32 (1961), 739-756. (1961) MR0133893DOI10.1214/aoms/1177704969
  28. L. Takács, Introduction to the theory of queues, Oxford Univ. Prass 1962. (1962) MR0133880
  29. L. Takács, Queues with infinitely many servers, RAIRO Recherche Opérat., 14 (1980), 109-113. (1980) MR0575658

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.