Note on type II counter problem
Anatolij Dvurečenskij; Genadij A. Ososkov
Aplikace matematiky (1984)
- Volume: 29, Issue: 4, page 237-249
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDvurečenskij, Anatolij, and Ososkov, Genadij A.. "Note on type II counter problem." Aplikace matematiky 29.4 (1984): 237-249. <http://eudml.org/doc/15354>.
@article{Dvurečenskij1984,
abstract = {In the paper the authors investigate the explicit form of the joint Laplace transform of the distances between two subsequent moments f particle registrations by the Type II counter (the counter with prolonged dead time), in the general case, and the generating function of the number of particles arriving during the dead time. They give explicit solutions to the complicated integral equations obtained by L. Takács and R. Pyke, respectively. Moreover, they study the geometric behaviour of the distribution of the latter above mentioned random variable, and make some remarks on the Type II counter and the case of registration of $m$ types of particles.},
author = {Dvurečenskij, Anatolij, Ososkov, Genadij A.},
journal = {Aplikace matematiky},
keywords = {counter theory; Laplace transform; generating function; dead time; counter theory; Laplace transform; generating function; dead time},
language = {eng},
number = {4},
pages = {237-249},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Note on type II counter problem},
url = {http://eudml.org/doc/15354},
volume = {29},
year = {1984},
}
TY - JOUR
AU - Dvurečenskij, Anatolij
AU - Ososkov, Genadij A.
TI - Note on type II counter problem
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 4
SP - 237
EP - 249
AB - In the paper the authors investigate the explicit form of the joint Laplace transform of the distances between two subsequent moments f particle registrations by the Type II counter (the counter with prolonged dead time), in the general case, and the generating function of the number of particles arriving during the dead time. They give explicit solutions to the complicated integral equations obtained by L. Takács and R. Pyke, respectively. Moreover, they study the geometric behaviour of the distribution of the latter above mentioned random variable, and make some remarks on the Type II counter and the case of registration of $m$ types of particles.
LA - eng
KW - counter theory; Laplace transform; generating function; dead time; counter theory; Laplace transform; generating function; dead time
UR - http://eudml.org/doc/15354
ER -
References
top- Л. Г. Афанасьева И. В. Михайлова, Предельное распределение периода занятости в системах и в условиях большой загруски, в. кн. Материалы Всесоюзного симпозиума по статистике случайных процессов, изд. Киевского гос. ун-та, Киев (1973), 12-15. (1973)
- Л. Г. Афанасьева И. В. Михайлова, О восстановлениии характеристик некоторых систем массового обслуживания по выходящему потоку, в кн. Труды мат. фак. ВГУ, вып. 9, изд. Воронежского гос. ун-та, Воронеж (1973), 132-138. (1973) Zbl1221.53041MR0436667
- Л. Г. Афанасьева И. В. Михайлова, О числе требований, обслуженных за период занятости, Изв. АН СССР, Тех. Кибернетика, (1978), 88-96. (1978) Zbl1234.93001
- G. E. Albert L. Nelson, Contribution to the statistical theory of counter data, Ann. Math. Stat., 24 (1953), 9-22. (1953) MR0053447
- R. Barlow, Applications of semi-Markov processes to counter problems, in: Studies in applied probability and management science, Stanford Univ. Press, Stanford, Calif., (1962), 34-62. (1962) MR0139205
- M. Berman, The covariance of two type II counters, J. Appl. Probab., 18 (1981), 782-787. (1981) Zbl0467.60053MR0621246
- А. Цвуреченский, др., Об оценке плотности следов в трековых камерах, ОИЯИ, 5-81-362, Дубна (1981) 1-14. (1981) Zbl1167.00300
- А. Двуреченский, др., О применении систем массового обслуживания с бесконечным числом каналов к некоторым задачам физике энергий, ОИЯИ, P 5-82-682 (1982). 1 - 4. (1982) Zbl1164.20358
- A. Dvurečenskij G. A. Ososkov, On a busy period of discretized queue, JINR, E5-82-855, Dubna (1982). (1982)
- В. Феллер, Введение в теорию вероятностей и ее приложения, T. I., ,,Мир", Москва (1967). (1967) Zbl1103.35360
- В. И. Голъданский А. В. Куцешо, M И. Подгорецкий, Статистика отсчетов при регистрации ядерных частиц, ,,Физматгиз", Москва (1959). (1959) Zbl1234.81002
- R. L. Glückstern, Determination of bubble density, Nuclear. Instr. Meth. 45 (1966), 166-172. (1966)
- А. И. Маркушевич, Краткий курс теории аналитических функций, ,,Наука", Москва (1978). (1978) Zbl1130.91322
- F. Pollaczek, Sur la théorie stochastique des compteurs électroniques, C. R. Acad. Sci. Paris, 238 (1954), 322-324. (1954) Zbl0055.12601MR0059508
- R. Pyke, 10.1214/aoms/1177706533, Ann. Math. Stat., 29 (1958), 737-754. (1958) Zbl0086.33702MR0099089DOI10.1214/aoms/1177706533
- R. Pyke, Markov renewal processes of zero order and their application to counter theory, in: Studies in Applied Probability and Management Science, Stanford Univ. Press, Stanford, Calif., (1962), 173-183. (1962) Zbl0116.36402MR0133889
- G. Sankaranarayanan, 10.1214/aoms/1177704866, Ann. Math. Stat., 32 (1961), 1271-1285. Correction, ibid 33 (1962), 1466. (1961) Zbl0111.33103MR0137175DOI10.1214/aoms/1177704866
- G. Sankaranarayanan, Theory of particle counters, Math. Student, 32 (1964), 29-38. (1964) MR0184307
- G. Sankaranarayanan C. Suyambulingom, 10.1007/BF02614253, Metrika, 18 (1971/72) 227-233. Correction, ibid 20 (1973), 245. (1971) MR0413307DOI10.1007/BF02614253
- R. M. Sekkapan, 10.1177/0008068319660405, Calcutta Statis. Assoc. Bull., 15 (1966), 169-174. (1966) MR0217904DOI10.1177/0008068319660405
- W. L. Smith, Renewal theory and its ramifications, J. Roy. Stat. Soc. B, 20 (1958), 243 - 284. (1958) Zbl0091.30101MR0099090
- L. Takács, 10.1007/BF02021269, Acta. Math. Acad. Sci. Hungar., 6 (1955), 81-99. (1955) MR0070887DOI10.1007/BF02021269
- L. Takács, 10.1017/S0305004100031480, Proc. Cambr. Phil. Soc., 52 (1956), 488-498. (1956) MR0081585DOI10.1017/S0305004100031480
- L. Takács, On the sequence of events, selected by a counter from a recurrent process of events, Teor. Verojat. i. Prim. 1 (1956), 90-102. (1956) MR0084219
- L. Takács, 10.1007/BF02025237, Acta Math. Sci. Acad. Hungar., 8 (1957), 127-138. (1957) MR0090168DOI10.1007/BF02025237
- L. Takács, 10.1214/aoms/1177706457, Ann. Math. Stat., 29 (1958), 1257-1263. (1958) MR0099717DOI10.1214/aoms/1177706457
- L. Takács, 10.1214/aoms/1177704969, Ann. Math. Stat., 32 (1961), 739-756. (1961) MR0133893DOI10.1214/aoms/1177704969
- L. Takács, Introduction to the theory of queues, Oxford Univ. Prass 1962. (1962) MR0133880
- L. Takács, Queues with infinitely many servers, RAIRO Recherche Opérat., 14 (1980), 109-113. (1980) MR0575658
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.