A convergent nonlinear splitting via orthogonal projection
Aplikace matematiky (1984)
- Volume: 29, Issue: 4, page 250-257
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMandel, Jan. "A convergent nonlinear splitting via orthogonal projection." Aplikace matematiky 29.4 (1984): 250-257. <http://eudml.org/doc/15355>.
@article{Mandel1984,
abstract = {We study the convergence of the iterations in a Hilbert space $V,x_\{k+1\}=W(P)x_k, W(P)z=w=T(Pw+(I-P)z)$, where $T$ maps $V$ into itself and $P$ is a linear projection operator. The iterations converge to the unique fixed point of $T$, if the operator $W(P)$ is continuous and the Lipschitz constant $\left\Vert (I-P)W(P)\right\Vert <1$. If an operator $W(P_1)$ satisfies these assumptions and $P_2$ is an orthogonal projection such that $P_1P_2=P_2P_1=P_1$, then the operator $W(P_2)$ is defined and continuous in $V$ and satisfies $\left\Vert (I-P_2)W(P_2)\right\Vert \le \left\Vert (I-P_1)W(P_1)\right\Vert $.},
author = {Mandel, Jan},
journal = {Aplikace matematiky},
keywords = {convergent nonlinear splitting; orthogonal projection; iterations; Hilbert space; fixed point; convergent nonlinear splitting; orthogonal projection; iterations; Hilbert space; fixed point},
language = {eng},
number = {4},
pages = {250-257},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A convergent nonlinear splitting via orthogonal projection},
url = {http://eudml.org/doc/15355},
volume = {29},
year = {1984},
}
TY - JOUR
AU - Mandel, Jan
TI - A convergent nonlinear splitting via orthogonal projection
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 4
SP - 250
EP - 257
AB - We study the convergence of the iterations in a Hilbert space $V,x_{k+1}=W(P)x_k, W(P)z=w=T(Pw+(I-P)z)$, where $T$ maps $V$ into itself and $P$ is a linear projection operator. The iterations converge to the unique fixed point of $T$, if the operator $W(P)$ is continuous and the Lipschitz constant $\left\Vert (I-P)W(P)\right\Vert <1$. If an operator $W(P_1)$ satisfies these assumptions and $P_2$ is an orthogonal projection such that $P_1P_2=P_2P_1=P_1$, then the operator $W(P_2)$ is defined and continuous in $V$ and satisfies $\left\Vert (I-P_2)W(P_2)\right\Vert \le \left\Vert (I-P_1)W(P_1)\right\Vert $.
LA - eng
KW - convergent nonlinear splitting; orthogonal projection; iterations; Hilbert space; fixed point; convergent nonlinear splitting; orthogonal projection; iterations; Hilbert space; fixed point
UR - http://eudml.org/doc/15355
ER -
References
top- M. Fiedler V. Pták, On aggregation in matrix theory and its applications to numerical inverting of large matrices, Bull. Acad. Pol. Sci. Math. Astr. Phys. 11 (1963) 757-759. (1963) MR0166911
- N. S. Kurpeľ, Projection-iterative Methods of Solution of Operator Equations, (Russian). Naukova Dumka, Kiev 1968. (1968) MR0254691
- D. P. Looze N. R. Sandell, Jr., 10.1007/BF00934678, J. Optim. Theory Appl. 34 (1981) 371-382. (1981) MR0628203DOI10.1007/BF00934678
- A. Ju. Lučka, Projection-iterative Methods of Solution of Differential and Integral Equations, (Russian). Naukova Dumka, Kiev 1980. (1980) MR0598991
- A. Ju. Lučka, Convergence criteria of the projection-iterative method for nonlinear equations, (Russian). Preprint 82.24, Institute of Mathematics AN Ukrain. SSR, Kiev 1982. (1982)
- J. Mandel, Convergence of some two-level iterative methods, (Czech). PhD Thesis, Charles University, Prague 1982. (1982)
- J. Mandel, On some two-level iterative methods, In: Defect Correction - Theory and Applications (K. Böhmer, H. J. Stetter. editors), Computing Supplementum Vol. 5, Springer-Verlag, Wien, to appear. Zbl0552.65049MR0782691
- J. Mandel B. Sekerka, A local convergence proof for the iterative aggregation method, Linear Algebra Appl. 51 (1983), 163-172. (1983) MR0699731
- O. Pokorná I. Prágerová, Approximate matrix invertion by aggregation, In: Numerical Methods of Approximation Theory, Vol. 6 (L. Collatz, G. Meinhardus, H. Werner, editors), Birghäuser Verlag, Basel-Boston-Stuttgart 1982. (1982)
- A. E. Taylor, Introduction to Functional Analysis, J. Wiley Publ., New York 1958. (1958) Zbl0081.10202MR0098966
- R. S. Varga, Matrix Iterative Analysis, Prentice Hall Inc., Englewood Cliffs, New Jersey 1962. (1962) MR0158502
- T. Wazewski, Sur une procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison, Bull. Acad. Pol. Sci. Math. Astr. Phys. 8 (1960) 47-52. (1960) MR0126109
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.