A note on critical times of quasilinear hyperbolic systems
Aplikace matematiky (1984)
- Volume: 29, Issue: 4, page 294-302
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topStraškraba, Ivan. "A note on critical times of $2\times 2$ quasilinear hyperbolic systems." Aplikace matematiky 29.4 (1984): 294-302. <http://eudml.org/doc/15359>.
@article{Straškraba1984,
abstract = {In this paper the exact formula for the critical time of generating discontinuity (shock wave) in a solution of a $2\times 2$ quasilinear hyperbolic system is derived. The applicability of the formula in the engineering praxis is shown on one-dimensional equations of isentropic non-viscous compressible fluid flow.},
author = {Straškraba, Ivan},
journal = {Aplikace matematiky},
keywords = {quasilinear hyperbolic system; precise formula; critical time; shock wave; transformation; Riemann invariants; isentropic non-viscous compressible fluid flow; quasilinear hyperbolic system; precise formula; critical time; shock wave; transformation; Riemann invariants; isentropic non-viscous compressible fluid flow},
language = {eng},
number = {4},
pages = {294-302},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on critical times of $2\times 2$ quasilinear hyperbolic systems},
url = {http://eudml.org/doc/15359},
volume = {29},
year = {1984},
}
TY - JOUR
AU - Straškraba, Ivan
TI - A note on critical times of $2\times 2$ quasilinear hyperbolic systems
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 4
SP - 294
EP - 302
AB - In this paper the exact formula for the critical time of generating discontinuity (shock wave) in a solution of a $2\times 2$ quasilinear hyperbolic system is derived. The applicability of the formula in the engineering praxis is shown on one-dimensional equations of isentropic non-viscous compressible fluid flow.
LA - eng
KW - quasilinear hyperbolic system; precise formula; critical time; shock wave; transformation; Riemann invariants; isentropic non-viscous compressible fluid flow; quasilinear hyperbolic system; precise formula; critical time; shock wave; transformation; Riemann invariants; isentropic non-viscous compressible fluid flow
UR - http://eudml.org/doc/15359
ER -
References
top- P. D. Lax, 10.1063/1.1704154, J. Math. Physics, Vol. 5 (1964), No. 5, 611 - 613. (1964) Zbl0135.15101MR0165243DOI10.1063/1.1704154
- A. Jeffrey, Quasilinear Hyperbolic Systems and Waves, Pitman Publishing 1976. (1976) Zbl0322.35060MR0417585
- F. John, 10.1002/cpa.3160270307, Comm. Pure Appl. Math., XXVII (1974), 377-405. (1974) Zbl0302.35064MR0369934DOI10.1002/cpa.3160270307
- A. D. Myškis A. M. Filimonov, Continuous solutions of quasi-linear hyperbolic systems with two independent variables, (Russian). Differenciaľnyje uravnenija XVII (1981), 488 - 500. (1981)
- I. Straškraba V. Jezdinský, Critical times of generating shocks on smooth one-dimensional pressure wakes in inviscid fluids, Acta Technica 28 (1983), No. 5, 629-642. (1983) MR0727520
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.