# On the topological charge conservation in the three-dimensional $\mathrm{O}\left(3\right)$$\sigma $-model.

Aplikace matematiky (1984)

- Volume: 29, Issue: 5, page 367-371
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topDittrich, Jaroslav. "On the topological charge conservation in the three-dimensional ${\rm O}(3)$$\sigma $-model.." Aplikace matematiky 29.5 (1984): 367-371. <http://eudml.org/doc/15367>.

@article{Dittrich1984,

abstract = {A field of three-component unit vectors on the $2+1$ dimensional spacetime is considered. Two field configurations with different values of the topological charge cannot be connected by the path of field configurations with a finite Euclidean action. Therefore there is no transition between them. The initial and final configurations are assumed to be continuous at infinity. The asymptotic behaviour of intermediate configurations may be arbitrary. The proof is based on the properties of the degree of mapping.},

author = {Dittrich, Jaroslav},

journal = {Aplikace matematiky},

keywords = {field theory},

language = {eng},

number = {5},

pages = {367-371},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {On the topological charge conservation in the three-dimensional $\{\rm O\}(3)$$\sigma $-model.},

url = {http://eudml.org/doc/15367},

volume = {29},

year = {1984},

}

TY - JOUR

AU - Dittrich, Jaroslav

TI - On the topological charge conservation in the three-dimensional ${\rm O}(3)$$\sigma $-model.

JO - Aplikace matematiky

PY - 1984

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 29

IS - 5

SP - 367

EP - 371

AB - A field of three-component unit vectors on the $2+1$ dimensional spacetime is considered. Two field configurations with different values of the topological charge cannot be connected by the path of field configurations with a finite Euclidean action. Therefore there is no transition between them. The initial and final configurations are assumed to be continuous at infinity. The asymptotic behaviour of intermediate configurations may be arbitrary. The proof is based on the properties of the degree of mapping.

LA - eng

KW - field theory

UR - http://eudml.org/doc/15367

ER -

## References

top- A. M. Perelomov, Instanton-like solutiors in chiral models, Physica, 4D(1981), 1 - 25. (1981) MR0636468
- A. M. Переломов, Решения типа инстантонов в киральных моделях, Успехи физических наук, 134 (1981), 577-609. (1981) Zbl1170.01413MR0669201
- В. А. Фатеев И. В. Фролов А. С. Шварц, Квантовые флуктуации инстантонов в двумерной нелинейной анизотропной $\sigma $-модели, Ядерная физика, 32 (1980), 299-300. (1980) Zbl1059.81562
- A. Kundu, 10.1016/0370-2693(82)90952-2, Phys. Letters, 110 B (1982), 61 - 63. (1982) MR0647884DOI10.1016/0370-2693(82)90952-2
- J. Dittrich, 10.1007/BF01206944, Commun. Math. Phys., 82 (1981), 29-39. (1981) MR0638512DOI10.1007/BF01206944
- M. Requardt, 10.1007/BF01208276, Commun. Math. Phys., 80 (1981), 369-379. (1981) MR0626706DOI10.1007/BF01208276
- E. Elizalde, 10.1016/0370-2693(80)90671-1, Phys. Letters, 91B (1980), 103-106. (1980) MR0566898DOI10.1016/0370-2693(80)90671-1
- L. Schwartz, Analyse mathématique, Hermann, Paris 1967. Chapter VI. (1967) Zbl0171.01301
- В. А. Рохлин Д. Б. Фукс, Начальный курс топологии, Геометрические главы. Наука, Москва 1977. (1977) Zbl1225.01071

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.