On the topological charge conservation in the three-dimensional -model.
Aplikace matematiky (1984)
- Volume: 29, Issue: 5, page 367-371
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDittrich, Jaroslav. "On the topological charge conservation in the three-dimensional ${\rm O}(3)$$\sigma $-model.." Aplikace matematiky 29.5 (1984): 367-371. <http://eudml.org/doc/15367>.
@article{Dittrich1984,
abstract = {A field of three-component unit vectors on the $2+1$ dimensional spacetime is considered. Two field configurations with different values of the topological charge cannot be connected by the path of field configurations with a finite Euclidean action. Therefore there is no transition between them. The initial and final configurations are assumed to be continuous at infinity. The asymptotic behaviour of intermediate configurations may be arbitrary. The proof is based on the properties of the degree of mapping.},
author = {Dittrich, Jaroslav},
journal = {Aplikace matematiky},
keywords = {field theory},
language = {eng},
number = {5},
pages = {367-371},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the topological charge conservation in the three-dimensional $\{\rm O\}(3)$$\sigma $-model.},
url = {http://eudml.org/doc/15367},
volume = {29},
year = {1984},
}
TY - JOUR
AU - Dittrich, Jaroslav
TI - On the topological charge conservation in the three-dimensional ${\rm O}(3)$$\sigma $-model.
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 5
SP - 367
EP - 371
AB - A field of three-component unit vectors on the $2+1$ dimensional spacetime is considered. Two field configurations with different values of the topological charge cannot be connected by the path of field configurations with a finite Euclidean action. Therefore there is no transition between them. The initial and final configurations are assumed to be continuous at infinity. The asymptotic behaviour of intermediate configurations may be arbitrary. The proof is based on the properties of the degree of mapping.
LA - eng
KW - field theory
UR - http://eudml.org/doc/15367
ER -
References
top- A. M. Perelomov, Instanton-like solutiors in chiral models, Physica, 4D(1981), 1 - 25. (1981) MR0636468
- A. M. Переломов, Решения типа инстантонов в киральных моделях, Успехи физических наук, 134 (1981), 577-609. (1981) Zbl1170.01413MR0669201
- В. А. Фатеев И. В. Фролов А. С. Шварц, Квантовые флуктуации инстантонов в двумерной нелинейной анизотропной -модели, Ядерная физика, 32 (1980), 299-300. (1980) Zbl1059.81562
- A. Kundu, 10.1016/0370-2693(82)90952-2, Phys. Letters, 110 B (1982), 61 - 63. (1982) MR0647884DOI10.1016/0370-2693(82)90952-2
- J. Dittrich, 10.1007/BF01206944, Commun. Math. Phys., 82 (1981), 29-39. (1981) MR0638512DOI10.1007/BF01206944
- M. Requardt, 10.1007/BF01208276, Commun. Math. Phys., 80 (1981), 369-379. (1981) MR0626706DOI10.1007/BF01208276
- E. Elizalde, 10.1016/0370-2693(80)90671-1, Phys. Letters, 91B (1980), 103-106. (1980) MR0566898DOI10.1016/0370-2693(80)90671-1
- L. Schwartz, Analyse mathématique, Hermann, Paris 1967. Chapter VI. (1967) Zbl0171.01301
- В. А. Рохлин Д. Б. Фукс, Начальный курс топологии, Геометрические главы. Наука, Москва 1977. (1977) Zbl1225.01071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.