Some distribution results on generalized ballot problems
Aplikace matematiky (1985)
- Volume: 30, Issue: 3, page 157-165
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSaran, Jagdish, and Sen, Kanwar. "Some distribution results on generalized ballot problems." Aplikace matematiky 30.3 (1985): 157-165. <http://eudml.org/doc/15394>.
@article{Saran1985,
abstract = {Suppose that in a ballot candidate $A$ scores $a$ votes and candidate $B$ scores $b$ votes and that all possible $\left(\{a+b\} \\ a \right)$ voting sequences are equally probable. Denote by $\alpha _r$ and by $\beta _r$ the number of votes registered for $A$ and for $B$, respectively, among the first $r$ votes recorded, $r=1, \dots , a+b$. The purpose of this paper is to derive, for $a\ge b-c$, the probability distributions of the random variables defined as the number of subscripts $r=1, \dots , a+b$ for which (i) $\alpha _r=\beta _r-c$, (ii) $\alpha _r=\beta _r-c$ but $\alpha _\{r-1\}=\beta _\{r-1\}-c\pm 1$, (iii) $\alpha _r=\beta _r-c$ but $\alpha _\{r-1\}=\beta _\{r-1\}-c\pm 1$ and $\alpha _\{r+1\}=\beta _\{r+1\}-c\pm 1$, where $c=0,\pm 1, \pm 2, \dots $.},
author = {Saran, Jagdish, Sen, Kanwar},
journal = {Aplikace matematiky},
keywords = {ballot problem},
language = {eng},
number = {3},
pages = {157-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some distribution results on generalized ballot problems},
url = {http://eudml.org/doc/15394},
volume = {30},
year = {1985},
}
TY - JOUR
AU - Saran, Jagdish
AU - Sen, Kanwar
TI - Some distribution results on generalized ballot problems
JO - Aplikace matematiky
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 30
IS - 3
SP - 157
EP - 165
AB - Suppose that in a ballot candidate $A$ scores $a$ votes and candidate $B$ scores $b$ votes and that all possible $\left({a+b} \\ a \right)$ voting sequences are equally probable. Denote by $\alpha _r$ and by $\beta _r$ the number of votes registered for $A$ and for $B$, respectively, among the first $r$ votes recorded, $r=1, \dots , a+b$. The purpose of this paper is to derive, for $a\ge b-c$, the probability distributions of the random variables defined as the number of subscripts $r=1, \dots , a+b$ for which (i) $\alpha _r=\beta _r-c$, (ii) $\alpha _r=\beta _r-c$ but $\alpha _{r-1}=\beta _{r-1}-c\pm 1$, (iii) $\alpha _r=\beta _r-c$ but $\alpha _{r-1}=\beta _{r-1}-c\pm 1$ and $\alpha _{r+1}=\beta _{r+1}-c\pm 1$, where $c=0,\pm 1, \pm 2, \dots $.
LA - eng
KW - ballot problem
UR - http://eudml.org/doc/15394
ER -
References
top- A. Aeppli, Zur Theorie Verketteter Wahrscheinlichkeiten, Thèse, Zürich (1924). (1924)
- D. André, Solution directe du problème rèsolu par M. Bertrand, C. R. Acad. Sci. (Paris), 105 (1887), 436-437.
- É. Barbier, Généralisation du problème rèsolu par M. J. Bertrand, C. R. Acad. Sci. (Paris), 105 (1887), 407.
- J. Bertrand, Solution ďun probléme, C. R. Acad. Sci. (Paris), 105 (1887), 369.
- M. T. L. Bizley, 10.1017/S002026810005424X, J. Inst. Actuar., 80 (1954), 55-62. (1954) MR0061567DOI10.1017/S002026810005424X
- M. T. L. Bizley, Problem 5503, Amer. Math. Monthly, 74 (1967), 728. (1967)
- K. L. Chung W. Feller, 10.1073/pnas.35.10.605, Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 605-608. (1949) MR0033459DOI10.1073/pnas.35.10.605
- A. Dvoretzky, Th. Motzkin, 10.1215/S0012-7094-47-01423-3, Duke Math. Journal, 14 (1947), 305-313. (1947) MR0021531DOI10.1215/S0012-7094-47-01423-3
- O. Engelberg, 10.2307/3212068, J. Appl. Prob., 1 (1964), 168-172. (1964) Zbl0203.19301MR0161354DOI10.2307/3212068
- O. Engelberg, 10.1007/BF00535777, Z. Wahrscheinlichkeitstheorie, 3 (1965), 271-275. (1965) Zbl0131.17304MR0185626DOI10.1007/BF00535777
- W. Feller, An introduction to probability theory and its Applications, Vol. I., Third Edition, John Wiley, New York (1968). (1968) Zbl0155.23101MR0228020
- H. D. Grossman, Another extension of the ballot problem, Scripta Math., 16 (1950), 120-124. (1950)
- S. G. Mohanty T. V. Narayana, 10.1002/bimj.19610030403, Biometrische Zeitschrift, 3 (1961), 252-258. (1961) DOI10.1002/bimj.19610030403
- L. Takács, A generalization of the ballot problem and its application in the theory of queues, J. Amer. Statist. Assoc., 57 (1962), 327-337. (1962) MR0138139
- L. Takács, 10.1007/BF01844418, Z. Wahrscheinlichkeitstheorie, 1 (1962), 154-158. (1962) MR0145601DOI10.1007/BF01844418
- L. Takács, 10.1007/BF00531965, Z. Wahrscheinlichkeitstheorie, 2 (1963), 118-121. (1963) MR0160276DOI10.1007/BF00531965
- L. Takács, 10.2307/3211869, J. Appl. Prob., 1 (1964), 393-396. (1964) MR0169340DOI10.2307/3211869
- L. Takács, Combinatorial methods in the theory of stochastic processes, John Wiley, New York (1967). (1967) MR0217858
- L. Takács, 10.2307/3212153, J. Appl., Prob., 7 (1970), 114-123. (1970) MR0253447DOI10.2307/3212153
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.