Some distribution results on generalized ballot problems

Jagdish Saran; Kanwar Sen

Aplikace matematiky (1985)

  • Volume: 30, Issue: 3, page 157-165
  • ISSN: 0862-7940

Abstract

top
Suppose that in a ballot candidate A scores a votes and candidate B scores b votes and that all possible a + b a voting sequences are equally probable. Denote by α r and by β r the number of votes registered for A and for B , respectively, among the first r votes recorded, r = 1 , , a + b . The purpose of this paper is to derive, for a b - c , the probability distributions of the random variables defined as the number of subscripts r = 1 , , a + b for which (i) α r = β r - c , (ii) α r = β r - c but α r - 1 = β r - 1 - c ± 1 , (iii) α r = β r - c but α r - 1 = β r - 1 - c ± 1 and α r + 1 = β r + 1 - c ± 1 , where c = 0 , ± 1 , ± 2 , .

How to cite

top

Saran, Jagdish, and Sen, Kanwar. "Some distribution results on generalized ballot problems." Aplikace matematiky 30.3 (1985): 157-165. <http://eudml.org/doc/15394>.

@article{Saran1985,
abstract = {Suppose that in a ballot candidate $A$ scores $a$ votes and candidate $B$ scores $b$ votes and that all possible $\left(\{a+b\} \\ a \right)$ voting sequences are equally probable. Denote by $\alpha _r$ and by $\beta _r$ the number of votes registered for $A$ and for $B$, respectively, among the first $r$ votes recorded, $r=1, \dots , a+b$. The purpose of this paper is to derive, for $a\ge b-c$, the probability distributions of the random variables defined as the number of subscripts $r=1, \dots , a+b$ for which (i) $\alpha _r=\beta _r-c$, (ii) $\alpha _r=\beta _r-c$ but $\alpha _\{r-1\}=\beta _\{r-1\}-c\pm 1$, (iii) $\alpha _r=\beta _r-c$ but $\alpha _\{r-1\}=\beta _\{r-1\}-c\pm 1$ and $\alpha _\{r+1\}=\beta _\{r+1\}-c\pm 1$, where $c=0,\pm 1, \pm 2, \dots $.},
author = {Saran, Jagdish, Sen, Kanwar},
journal = {Aplikace matematiky},
keywords = {ballot problem},
language = {eng},
number = {3},
pages = {157-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some distribution results on generalized ballot problems},
url = {http://eudml.org/doc/15394},
volume = {30},
year = {1985},
}

TY - JOUR
AU - Saran, Jagdish
AU - Sen, Kanwar
TI - Some distribution results on generalized ballot problems
JO - Aplikace matematiky
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 30
IS - 3
SP - 157
EP - 165
AB - Suppose that in a ballot candidate $A$ scores $a$ votes and candidate $B$ scores $b$ votes and that all possible $\left({a+b} \\ a \right)$ voting sequences are equally probable. Denote by $\alpha _r$ and by $\beta _r$ the number of votes registered for $A$ and for $B$, respectively, among the first $r$ votes recorded, $r=1, \dots , a+b$. The purpose of this paper is to derive, for $a\ge b-c$, the probability distributions of the random variables defined as the number of subscripts $r=1, \dots , a+b$ for which (i) $\alpha _r=\beta _r-c$, (ii) $\alpha _r=\beta _r-c$ but $\alpha _{r-1}=\beta _{r-1}-c\pm 1$, (iii) $\alpha _r=\beta _r-c$ but $\alpha _{r-1}=\beta _{r-1}-c\pm 1$ and $\alpha _{r+1}=\beta _{r+1}-c\pm 1$, where $c=0,\pm 1, \pm 2, \dots $.
LA - eng
KW - ballot problem
UR - http://eudml.org/doc/15394
ER -

References

top
  1. A. Aeppli, Zur Theorie Verketteter Wahrscheinlichkeiten, Thèse, Zürich (1924). (1924) 
  2. D. André, Solution directe du problème rèsolu par M. Bertrand, C. R. Acad. Sci. (Paris), 105 (1887), 436-437. 
  3. É. Barbier, Généralisation du problème rèsolu par M. J. Bertrand, C. R. Acad. Sci. (Paris), 105 (1887), 407. 
  4. J. Bertrand, Solution ďun probléme, C. R. Acad. Sci. (Paris), 105 (1887), 369. 
  5. M. T. L. Bizley, 10.1017/S002026810005424X, J. Inst. Actuar., 80 (1954), 55-62. (1954) MR0061567DOI10.1017/S002026810005424X
  6. M. T. L. Bizley, Problem 5503, Amer. Math. Monthly, 74 (1967), 728. (1967) 
  7. K. L. Chung W. Feller, 10.1073/pnas.35.10.605, Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 605-608. (1949) MR0033459DOI10.1073/pnas.35.10.605
  8. A. Dvoretzky, Th. Motzkin, 10.1215/S0012-7094-47-01423-3, Duke Math. Journal, 14 (1947), 305-313. (1947) MR0021531DOI10.1215/S0012-7094-47-01423-3
  9. O. Engelberg, 10.2307/3212068, J. Appl. Prob., 1 (1964), 168-172. (1964) Zbl0203.19301MR0161354DOI10.2307/3212068
  10. O. Engelberg, 10.1007/BF00535777, Z. Wahrscheinlichkeitstheorie, 3 (1965), 271-275. (1965) Zbl0131.17304MR0185626DOI10.1007/BF00535777
  11. W. Feller, An introduction to probability theory and its Applications, Vol. I., Third Edition, John Wiley, New York (1968). (1968) Zbl0155.23101MR0228020
  12. H. D. Grossman, Another extension of the ballot problem, Scripta Math., 16 (1950), 120-124. (1950) 
  13. S. G. Mohanty T. V. Narayana, 10.1002/bimj.19610030403, Biometrische Zeitschrift, 3 (1961), 252-258. (1961) DOI10.1002/bimj.19610030403
  14. L. Takács, A generalization of the ballot problem and its application in the theory of queues, J. Amer. Statist. Assoc., 57 (1962), 327-337. (1962) MR0138139
  15. L. Takács, 10.1007/BF01844418, Z. Wahrscheinlichkeitstheorie, 1 (1962), 154-158. (1962) MR0145601DOI10.1007/BF01844418
  16. L. Takács, 10.1007/BF00531965, Z. Wahrscheinlichkeitstheorie, 2 (1963), 118-121. (1963) MR0160276DOI10.1007/BF00531965
  17. L. Takács, 10.2307/3211869, J. Appl. Prob., 1 (1964), 393-396. (1964) MR0169340DOI10.2307/3211869
  18. L. Takács, Combinatorial methods in the theory of stochastic processes, John Wiley, New York (1967). (1967) MR0217858
  19. L. Takács, 10.2307/3212153, J. Appl., Prob., 7 (1970), 114-123. (1970) MR0253447DOI10.2307/3212153

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.