The optimization of the stationary heat equation with a variable right-hand side
Aplikace matematiky (1986)
- Volume: 31, Issue: 2, page 97-108
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMatyska, Ctirad. "The optimization of the stationary heat equation with a variable right-hand side." Aplikace matematiky 31.2 (1986): 97-108. <http://eudml.org/doc/15440>.
@article{Matyska1986,
abstract = {Solving the stationary heat equation we optimize the temperature on part of the boundary of the domain under investigation. First the Poisson equation is solved; both the Neumann condition on part of the boundary and the Newton condition on the rest are prescribed, the distribution of the heat sources being variable. In the second case, the heat equation also contains a convective term, the distribution of heat sources is specified and the Neumann condition is variable on part of the boundary.},
author = {Matyska, Ctirad},
journal = {Aplikace matematiky},
keywords = {distribution of heat sources; Neumann boundary condition; Newton boundary condition; stationary heat equation; Poisson equation; boundary value problem; distribution of heat sources; Neumann boundary condition; Newton boundary condition; stationary heat equation; Poisson equation},
language = {eng},
number = {2},
pages = {97-108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The optimization of the stationary heat equation with a variable right-hand side},
url = {http://eudml.org/doc/15440},
volume = {31},
year = {1986},
}
TY - JOUR
AU - Matyska, Ctirad
TI - The optimization of the stationary heat equation with a variable right-hand side
JO - Aplikace matematiky
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 2
SP - 97
EP - 108
AB - Solving the stationary heat equation we optimize the temperature on part of the boundary of the domain under investigation. First the Poisson equation is solved; both the Neumann condition on part of the boundary and the Newton condition on the rest are prescribed, the distribution of the heat sources being variable. In the second case, the heat equation also contains a convective term, the distribution of heat sources is specified and the Neumann condition is variable on part of the boundary.
LA - eng
KW - distribution of heat sources; Neumann boundary condition; Newton boundary condition; stationary heat equation; Poisson equation; boundary value problem; distribution of heat sources; Neumann boundary condition; Newton boundary condition; stationary heat equation; Poisson equation
UR - http://eudml.org/doc/15440
ER -
References
top- D. J. Andrews, 10.1029/JB077i032p06470, J. Geoph. Res. 77 (1972), 6470-6481. (1972) DOI10.1029/JB077i032p06470
- S. Fučík A. Kufner, Nonlinear Differential Equations, Elsevier, Amsterdam, 1980. (1980) MR0558764
- S. Fučík J. Nečas V. Souček, Einführung in die Variationsrechnung, Teubner, Leipzig 1977. (1977) MR0487654
- Y. Ida, Thermal Circulation of Partial Melt and Volcanism behind Trenches, Oceanol. Acta, 1981. Proc. 26th Intern. Geolog. Congress, Geology of Continental Margins Symposium, Paris 1980, July 7-17, p 241-244. (1981)
- A. Kufner O. John S. Fučík, Function Spaces, Academia, Praha 1977. (1977) MR0482102
- X. LePichon J. Francheteau J. Bonnin, Plate Tectonics, Elsevier, Amsterdam etc. 1973. (1973)
- A. Marocco O. Pironneau, Optimum Design with Lagrangian Finite Elements: Design of an Electromagnet, Соmр. Meth. in Appl. Math. 15 (1978), 277-308. (1978)
- C. Matyska, The thermal Field of the Lithosphere in the Region of Mid-ocean Ridges Modelled on the Basis of Known Surface Temperature and Heat Flows, Studia geoph. et geodet. 28 (1984), 407-417. (1984)
- D. P. McKenzie J. M. Roberts N. O. Weiss, Convection in the Earth's Mantle: towards a Numerical Simulation, J. Fluid Mech. 62 (1974), part 3, 465-538. (1974)
- S. Mizohata, Теория уравнений с частными производными, Mir, Moskva 1977 (translated from Japanese). (1977)
- D. R. Moore N. O. Weiss, Two-dimensional Rayleigh-Bénard Convection, J. Fluid. Mech. 58 (1973), part 2, 289-312. (1973)
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
- J. Nečas I. Hlaváček, Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction, Elsevier, Amsterdam etc. 1981. (1981) MR0600655
- P. Olson K. M. Corcos, 10.1111/j.1365-246X.1980.tb04851.x, Geoph. J. R. Astr. Soc. 62 (1980), 195-219. (1980) DOI10.1111/j.1365-246X.1980.tb04851.x
- K. Rektorys, Variational Methods, Reidel C., Dordrecht-Boston 1977. (1977) MR0487653
- G. Schubert C. Froidevaux D. A. Yuen, 10.1029/JB081i020p03525, J. Geoph. Res. 81 (1976), 3525-3540. (1976) DOI10.1029/JB081i020p03525
- J. G. Sclater J. Francheteau, 10.1111/j.1365-246X.1970.tb06089.x, Geoph. J. R. Astr. Soc. 20 (1970), 509-542. (1970) DOI10.1111/j.1365-246X.1970.tb06089.x
- L. D. Turcotte E. R. Oxburgh, 10.1146/annurev.fl.04.010172.000341, Ann. Rev. Fluid. Mech. 4 (1972), 33-68. (1972) DOI10.1146/annurev.fl.04.010172.000341
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.