Convergence of multistep methods for systems of ordinary differential equations with parameters

Tadeusz Jankowski

Aplikace matematiky (1987)

  • Volume: 32, Issue: 4, page 257-270
  • ISSN: 0862-7940

Abstract

top
The author considers the convergence of quasilinear nonstationary multistep methods for systems of ordinary differential with parameters. Sufficient conditions for their convergence are given. The new numerical method is tested for two examples and it turns out to be a little better than the Hamming method.

How to cite

top

Jankowski, Tadeusz. "Convergence of multistep methods for systems of ordinary differential equations with parameters." Aplikace matematiky 32.4 (1987): 257-270. <http://eudml.org/doc/15498>.

@article{Jankowski1987,
abstract = {The author considers the convergence of quasilinear nonstationary multistep methods for systems of ordinary differential with parameters. Sufficient conditions for their convergence are given. The new numerical method is tested for two examples and it turns out to be a little better than the Hamming method.},
author = {Jankowski, Tadeusz},
journal = {Aplikace matematiky},
keywords = {quasilinear nonstationary multistep methods; convergence; Hamming method; Quasilinear nonstationary multistep methods; convergence},
language = {eng},
number = {4},
pages = {257-270},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of multistep methods for systems of ordinary differential equations with parameters},
url = {http://eudml.org/doc/15498},
volume = {32},
year = {1987},
}

TY - JOUR
AU - Jankowski, Tadeusz
TI - Convergence of multistep methods for systems of ordinary differential equations with parameters
JO - Aplikace matematiky
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 4
SP - 257
EP - 270
AB - The author considers the convergence of quasilinear nonstationary multistep methods for systems of ordinary differential with parameters. Sufficient conditions for their convergence are given. The new numerical method is tested for two examples and it turns out to be a little better than the Hamming method.
LA - eng
KW - quasilinear nonstationary multistep methods; convergence; Hamming method; Quasilinear nonstationary multistep methods; convergence
UR - http://eudml.org/doc/15498
ER -

References

top
  1. I. Babuška M. Práger E. Vitásek, Numerical processes in differential equations, Praha 1966. (1966) MR0223101
  2. R. Conti, 10.1002/mana.1961.3210230304, Mathematische Nachrichten 23 (1961), 161-178. (1961) MR0138818DOI10.1002/mana.1961.3210230304
  3. A. Gasparini A. Mangini, Sul calcolo numerico delle soluzioni di un noto problema ai limiti per l’equazione y ' = λ f ( x , y ) , Le Matematiche 22 (1965), 101-121. (1965) MR0191098
  4. R. W. Hamming, 10.1145/320954.320958, Journal of the Association for Computing Machinery, t. 6 nr. 1 (1959), 37-47. (1959) Zbl0086.11201MR0102179DOI10.1145/320954.320958
  5. Z. Jackiewicz M. Kwapisz, 10.1007/BF02252383, Computing 20 (1978), 351 - 361. (1978) MR0619909DOI10.1007/BF02252383
  6. K. Jankowska T. Jankowski, On a boundary-value problem of a differential equation with a deviated argument, (Polish), Zeszyty Naukowe Politechniki Gdańskiej, Matematyka 7 (1973), 33-48. (1973) 
  7. T. Jankowski, 10.1515/dema-1983-0309, Demonstratio Mathematica 16 (1983), 651 - 675. (1983) Zbl0571.65065MR0733727DOI10.1515/dema-1983-0309
  8. T. Jankowski M. Kwapisz, 10.1002/mana.19760710119, Mathematische Nachrichten 71 (1976), 237-247. (1976) MR0405190DOI10.1002/mana.19760710119
  9. H. Jeffreys B. S. Jeffreys, Methods of mathematical physics, Cambridge UP 1956. (1956) MR0074466
  10. A. V. Kibenko A. I. Perov, A two-point boundary value problem with parameter, (Russian), Azerbaidžan. Gos. Univ. Učen. Zap. Ser. Fiz.-Mat. i Him. Nauk 3 (1961), 21-30. (1961) MR0222376
  11. J. D. Lambert, Computational methods in ordinary differential equations, New York 1973. (1973) Zbl0258.65069MR0423815
  12. D. I. Martiniuk, Lectures on qualitative theory of difference equations, (Russian). Kiev: Naukova Dumka 1972. (1972) MR0611163
  13. R. Pasquali, Un procedimento di calcolo connesso ad un noto problema ai limiti per l’equazione x ' = f ( t , x , λ ) , Le Matematiche 23 (1968), 319-328. (1968) Zbl0182.22003MR0267785
  14. Z. B. Seidov, A multipoint boundary value problem with a parameter for systems of differential equations in Banach space, Sibirskij Matematiczeskij Žurnał 9 (1968), 223-228. (1968) MR0281987
  15. D. Squier, 10.1016/0021-9045(68)90027-0, Journal of Approximation Theory 1 (1968), 236-242. (1968) Zbl0219.39003MR0234637DOI10.1016/0021-9045(68)90027-0
  16. J. Stoer R. Bulirsch, Einführung in die Numerische Mathematik I:, Springer Verlag Berlin Heidelberg 1972. (1972) MR0400617
  17. S. Takahashi, Die Differentialgleichung y ' = k f ( x , y ) , Tôhoku Math. J. 34 (1941), 249-256. (1941) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.