Joint distribution of the busy and idle periods of a discrete modified queue
Aplikace matematiky (1988)
- Volume: 33, Issue: 1, page 68-76
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDvurečenskij, Anatolij. "Joint distribution of the busy and idle periods of a discrete modified $GI/GI/c/\infty $ queue." Aplikace matematiky 33.1 (1988): 68-76. <http://eudml.org/doc/15524>.
@article{Dvurečenskij1988,
abstract = {For a discrete modified $GI/GI/c/\infty $ queue, $1\le c < \infty $, where the service times of all customers served during any busy period are independent random variables with not necessarily identical distribution functions, the joint distribution of the busy period, the subsequent idle period and the number of customers served during the busy period is derived. The formulae presented are in a convenient form for practical use. The paper is a continuation of [5], where the $M/GI/c/\infty $ discrete modified queue has been studied.},
author = {Dvurečenskij, Anatolij},
journal = {Aplikace matematiky},
keywords = {distribution of the busy period; idle period; number of customers; distribution of the busy period; idle period; number of customers},
language = {eng},
number = {1},
pages = {68-76},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Joint distribution of the busy and idle periods of a discrete modified $GI/GI/c/\infty $ queue},
url = {http://eudml.org/doc/15524},
volume = {33},
year = {1988},
}
TY - JOUR
AU - Dvurečenskij, Anatolij
TI - Joint distribution of the busy and idle periods of a discrete modified $GI/GI/c/\infty $ queue
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 1
SP - 68
EP - 76
AB - For a discrete modified $GI/GI/c/\infty $ queue, $1\le c < \infty $, where the service times of all customers served during any busy period are independent random variables with not necessarily identical distribution functions, the joint distribution of the busy period, the subsequent idle period and the number of customers served during the busy period is derived. The formulae presented are in a convenient form for practical use. The paper is a continuation of [5], where the $M/GI/c/\infty $ discrete modified queue has been studied.
LA - eng
KW - distribution of the busy period; idle period; number of customers; distribution of the busy period; idle period; number of customers
UR - http://eudml.org/doc/15524
ER -
References
top- A. A. Borovkov, On discrete queueing systems, Teorija veroj. i prim., 8, 251 - 263 (1963) (in Russian). (1963) MR0154344
- A. A. Borovkov, Stochastic Process in Queueing Theory, Nauka, Moscow (1972) (in Russian). (1972) MR0315800
- A. Dvurečenskij, al., 10.2307/3213680, J. Appl. Prob. 21, 201 - 206 (1984). (1984) MR0732687DOI10.2307/3213680
- A. Dvurečenskij G. A. Ososkov, 10.1017/S0021900200029429, J. Appl. Prob., 22, 678-687(1985). (1985) MR0799290DOI10.1017/S0021900200029429
- A. Dvurečenskij, On a discrete modified queue, Aplikace mat., 32, 214 - 223 (1987). (1987) MR0895879
- V. V. Kalashnikov, On joint distribution of the busy and idle periods of queueing systems, Izv. AN SSSR, Tekh. kiber. no. 6, 106-109 (1917) (in Russian). (1917)
- A. G. Pakes, 10.1007/BF02479785, Ann. Inst. Statis. Math., 24, 589-597 (1972). (1972) Zbl0311.60054MR0336844DOI10.1007/BF02479785
- A. G. Pakes, 10.2307/3212506, J. Appl. Prob., 10, 192-197 (1973). (197) MR0350902DOI10.2307/3212506
- J. G. Shanthikumar, Level crossing of some variants of GI/M/1 queues, Opsearch., 19, 148-159 (1982). (1982) MR0696148
- P. D. Welch, 10.1287/opre.12.5.736, Oper. res., 12, 736-752 (1964). (1964) MR0176544DOI10.1287/opre.12.5.736
- G. F. Yeo, Single server queues with modified service mechanisms, J. Austral. Math. Soc., 3, 491-502( 1962). (1962) Zbl0134.35302MR0181026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.