Forced periodic vibrations of an elastic system with elastico-plastic damping

Pavel Krejčí

Aplikace matematiky (1988)

  • Volume: 33, Issue: 2, page 145-153
  • ISSN: 0862-7940

Abstract

top
We prove the existence and find necessary and sufficient conditions for the uniqueness of the time-periodic solution to the equations u t t - Δ x u ± F ( u ) = g ( x , t ) for an arbitrary (sufficiently smooth) periodic right-hand side g , where Δ x denotes the Laplace operator with respect to x Ω R N , N 1 , and F is the Ishlinskii hysteresis operator. For N = 2 this equation describes e.g. the vibrations of an elastic membrane in an elastico-plastic medium.

How to cite

top

Krejčí, Pavel. "Forced periodic vibrations of an elastic system with elastico-plastic damping." Aplikace matematiky 33.2 (1988): 145-153. <http://eudml.org/doc/15531>.

@article{Krejčí1988,
abstract = {We prove the existence and find necessary and sufficient conditions for the uniqueness of the time-periodic solution to the equations $u_\{tt\} - \Delta _xu \pm F(u) = g(x,t)$ for an arbitrary (sufficiently smooth) periodic right-hand side $g$, where $\Delta _x$ denotes the Laplace operator with respect to $x\in \Omega \subset R^N, N\ge 1$, and $F$ is the Ishlinskii hysteresis operator. For $N=2$ this equation describes e.g. the vibrations of an elastic membrane in an elastico-plastic medium.},
author = {Krejčí, Pavel},
journal = {Aplikace matematiky},
keywords = {wave equation; hysteresis; Hooke law; elasto-plastic materials; existence; uniqueness; weak omega-periodic solutions; Ishlinskij operator; wave equation; hysteresis; Hooke law; elasto-plastic materials; existence; uniqueness; weak omega-periodic solutions; Ishlinskij operator},
language = {eng},
number = {2},
pages = {145-153},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Forced periodic vibrations of an elastic system with elastico-plastic damping},
url = {http://eudml.org/doc/15531},
volume = {33},
year = {1988},
}

TY - JOUR
AU - Krejčí, Pavel
TI - Forced periodic vibrations of an elastic system with elastico-plastic damping
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 2
SP - 145
EP - 153
AB - We prove the existence and find necessary and sufficient conditions for the uniqueness of the time-periodic solution to the equations $u_{tt} - \Delta _xu \pm F(u) = g(x,t)$ for an arbitrary (sufficiently smooth) periodic right-hand side $g$, where $\Delta _x$ denotes the Laplace operator with respect to $x\in \Omega \subset R^N, N\ge 1$, and $F$ is the Ishlinskii hysteresis operator. For $N=2$ this equation describes e.g. the vibrations of an elastic membrane in an elastico-plastic medium.
LA - eng
KW - wave equation; hysteresis; Hooke law; elasto-plastic materials; existence; uniqueness; weak omega-periodic solutions; Ishlinskij operator; wave equation; hysteresis; Hooke law; elasto-plastic materials; existence; uniqueness; weak omega-periodic solutions; Ishlinskij operator
UR - http://eudml.org/doc/15531
ER -

References

top
  1. О. В. Бесов В. П. Ильин С. М. Никольский, Интегральные представления функций и теоремы вложения, Москва, Наука, 1975. (1975) Zbl1231.90252
  2. A. IO. Ишлинский, Некоторые применения статистики к описанию законов деформирования тел, Изв. АН СССР, OTH, 1944, но. 9, 583-590. (1944) Zbl0149.19102
  3. M. А. Красносельский А. В. Покровский, Системы с гистерезисом, Москва, Наука, 1983. (1983) Zbl1229.47001
  4. P. Krejčí, 10.1007/BF01174335, Math. Z. 193 (1986), 247-264. (193) MR0856153DOI10.1007/BF01174335
  5. P. Krejčí, On Ishlinskii's model for non-perfectly elastic bodies, To appear. 
  6. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Praha, 1967. (1967) MR0227584
  7. A. Visintin, On the Preisach model for hysteresis, Nonlinear Anal. T.M.A. 8 (1984), 977-996. (1984) Zbl0563.35007MR0760191
  8. A. Visintin, Evolution problems with hysteresis in the source term, Ist. Anal. Num. C.N.R., Pavia, Italy. Preprint no. 326. Zbl0618.35053MR0853520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.