A monotonicity method for solving hyperbolic problems with hysteresis
Aplikace matematiky (1988)
- Volume: 33, Issue: 3, page 197-203
- ISSN: 0862-7940
Access Full Article
topHow to cite
topKrejčí, Pavel. "A monotonicity method for solving hyperbolic problems with hysteresis." Aplikace matematiky 33.3 (1988): 197-203. <http://eudml.org/doc/15537>.
@article{Krejčí1988,
author = {Krejčí, Pavel},
journal = {Aplikace matematiky},
keywords = {quasilinear; method of Minty-Browder type; existence; uniqueness; weak $\omega $-periodic solution; vibrating processes; elasto-plastic solids; ferromagnetics; Ishlinskii hysteresis operator; finite speed of propagation; sharp estimates; hysteresis energy losses; quasilinear; method of Minty-Browder type; existence; uniqueness; weak -periodic solution; vibrating processes; elasto-plastic solids; ferromagnetics; hysteresis operator; finite speed of propagation; sharp estimates; hysteresis energy losses},
language = {eng},
number = {3},
pages = {197-203},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A monotonicity method for solving hyperbolic problems with hysteresis},
url = {http://eudml.org/doc/15537},
volume = {33},
year = {1988},
}
TY - JOUR
AU - Krejčí, Pavel
TI - A monotonicity method for solving hyperbolic problems with hysteresis
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 3
SP - 197
EP - 203
LA - eng
KW - quasilinear; method of Minty-Browder type; existence; uniqueness; weak $\omega $-periodic solution; vibrating processes; elasto-plastic solids; ferromagnetics; Ishlinskii hysteresis operator; finite speed of propagation; sharp estimates; hysteresis energy losses; quasilinear; method of Minty-Browder type; existence; uniqueness; weak -periodic solution; vibrating processes; elasto-plastic solids; ferromagnetics; hysteresis operator; finite speed of propagation; sharp estimates; hysteresis energy losses
UR - http://eudml.org/doc/15537
ER -
References
top- S. Fučík A. Kufner, Nonlinear differential equations, (Czech). SNTL, Praha, 1978. (1978)
- P. Krejčí, 10.1007/BF01174335, Math. Z. 193 (1986), 247-264. (193) MR0856153DOI10.1007/BF01174335
- P. Krejčí, On Ishlinskii model for non-perfectly elastic bodies, Apl. mat. 33 (1988), No. 2, 133-144. (1988) MR0940712
- A. Kufner O. John S. Fučík, Function spaces, Academia, Praha, 1977. (1977) MR0482102
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. (1969) Zbl0189.40603MR0259693
- О. В. Бесов, В П. Ильин С. М. Никольский, Интегральные представления функций и теоремы вложения, Наука, Москва, 1975. (1975) Zbl1231.90252
- А. Ю. Ишлинский, Некоторые применения статистики к описанию законов деформирования тел, Изв. АН СССР, OTH, 1944, Но 9, 583-590. (1944) Zbl0149.19102
- M. А. Красносельский А. В. Покровский, Системы с гистерезисом, Наука, Москва, 1983. (1983) Zbl1229.47001
Citations in EuDML Documents
top- Pavel Krejčí, Jürgen Sprekels, Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity
- Pavel Krejčí, On Maxwell equations with the Preisach hysteresis operator: The one- dimensional time-periodic case
- Pavel Krejčí, Hysteresis operators - a new approach to evolution differential inequalities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.