On Newton-like methods to enclose solutions of nonlinear equations

Günter Mayer

Aplikace matematiky (1989)

  • Volume: 34, Issue: 1, page 67-84
  • ISSN: 0862-7940

Abstract

top
We present a class of Newton-like methods to enclose solutions of systems of nonlinear equations. Theorems are derived concerning the feasibility of the method, its global convergence, its speed and the quality of enclosure.

How to cite

top

Mayer, Günter. "On Newton-like methods to enclose solutions of nonlinear equations." Aplikace matematiky 34.1 (1989): 67-84. <http://eudml.org/doc/15565>.

@article{Mayer1989,
abstract = {We present a class of Newton-like methods to enclose solutions of systems of nonlinear equations. Theorems are derived concerning the feasibility of the method, its global convergence, its speed and the quality of enclosure.},
author = {Mayer, Günter},
journal = {Aplikace matematiky},
keywords = {interval analysis; Jacobi splitting; enclosure of solutions; interval Jacobian matrix; Newton-like methods; global convergence; numerical examples; Gauss-Seidel splitting; nonlinear equations; interval analysis; Jacobi splitting; enclosure of solutions; interval Jacobian matrix; Newton-like methods; global convergence; numerical examples; Gauss-Seidel splitting},
language = {eng},
number = {1},
pages = {67-84},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Newton-like methods to enclose solutions of nonlinear equations},
url = {http://eudml.org/doc/15565},
volume = {34},
year = {1989},
}

TY - JOUR
AU - Mayer, Günter
TI - On Newton-like methods to enclose solutions of nonlinear equations
JO - Aplikace matematiky
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 1
SP - 67
EP - 84
AB - We present a class of Newton-like methods to enclose solutions of systems of nonlinear equations. Theorems are derived concerning the feasibility of the method, its global convergence, its speed and the quality of enclosure.
LA - eng
KW - interval analysis; Jacobi splitting; enclosure of solutions; interval Jacobian matrix; Newton-like methods; global convergence; numerical examples; Gauss-Seidel splitting; nonlinear equations; interval analysis; Jacobi splitting; enclosure of solutions; interval Jacobian matrix; Newton-like methods; global convergence; numerical examples; Gauss-Seidel splitting
UR - http://eudml.org/doc/15565
ER -

References

top
  1. G. Alefeld, 10.1137/0721027, SIAM J. Numer. Anal. 21 (1984), 363-372. (1984) Zbl0536.65026MR0736338DOI10.1137/0721027
  2. G. Alefeld J. Herzberger, Introduction to interval computations, Academic Press, New York, 1983. (1983) MR0733988
  3. C. T. H. Baker, The numerical treatment of integral equations, Clarendon Press, Oxford, 1977. (1977) Zbl0373.65060MR0467215
  4. W. Barth. E. Nuding, 10.1007/BF02260368, Computing 12 (1974), 117-125. (1974) Zbl0275.65008MR0398075DOI10.1007/BF02260368
  5. S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960. (1960) MR0111583
  6. P. Frank R. Mises, Die Differential- und Integralgleichungen der Mechanik und Physik, Bd. 1. Nachdruck. Dover Publications, New York, 1961. (1961) 
  7. A. Frommer, Monotonie und Einschliessung beim Brown-Verfahren, Dissertation, Universisität Karlsruhe, 1986. (1986) Zbl0613.65051
  8. D. Greenspan, Discrete Numerical Methods in Physics and Engineering, Academic Press, New York, 1974. (1974) Zbl0288.65001MR0362905
  9. U. Kulisch W. L. Miranker, Computer Arithmetic in Theory and Practice, Academic Press, New York, 1981. (1981) MR0606741
  10. U. Kulisch W. L. Miranker, A new approach to scientific computation, Academic Press, New York, 1983. (1983) MR0721972
  11. G. Mayer, 10.1137/0724018, SIAM J. Numer. Anal. 24 (1987), 215-227. (1987) Zbl0614.65030MR0874747DOI10.1137/0724018
  12. G. Mayer, Reguläre Zerlegungen und der Satz von Stein und Rosenberg für Intervallmatrizen, Habilitationsschrift. Universität Karlsruhe, 1986. (1986) 
  13. A. Neumaier, 10.1016/0024-3795(84)90217-9, Lin. Alg. Appl. 58 (1984), 273-325. (1984) Zbl0558.65019MR0739292DOI10.1016/0024-3795(84)90217-9
  14. A. Neumaier, 10.1007/BF01935003, BIT 25 (1985), 256 - 273. (1985) Zbl0575.65045MR0785818DOI10.1007/BF01935003
  15. J. M. Ortega, Numerical analysis. A second course, Academic Press, New York, 1972. (1972) Zbl0248.65001MR0403154
  16. J. M. Ortega W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970. (1970) MR0273810
  17. L. B. Rall, Computational solution of nonlinear operator equations, Krieger Publishing Company, New York, 1979. (1979) Zbl0476.65033MR0601777
  18. L. B. Rall, An introduction to the scientific computing language PASCAL-SC, MRC Technical Summary Report # 2644, Mathematics Research Center University of Wisconsin, Madison, 1984. (1984) 
  19. H. Schwandt, Schnelle fast global konvergente Verfahren für die Fünf-Punkt-Diskretisierung der Poissongleichung mit Dirichletschen Randbedingungen auf Rechteckgebieten, Dissertation, Technische Universität Berlin, 1981. (1981) Zbl0474.65037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.