Convergence of the accelerated overrelaxation method
Dragoslav Herceg; Ljiljana Cvetković
Aplikace matematiky (1989)
- Volume: 34, Issue: 6, page 475-479
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHerceg, Dragoslav, and Cvetković, Ljiljana. "Convergence of the accelerated overrelaxation method." Aplikace matematiky 34.6 (1989): 475-479. <http://eudml.org/doc/15603>.
@article{Herceg1989,
abstract = {The convergence of the Accelerated Overrelaxation (AOR) method is discussed. It is shown that the intervals of convergence for the parameters $\sigma $ and $\omega $ are not always of the following form: $0\le \omega \le \omega _1, -\sigma _1\le \sigma \le \sigma _2, \sigma _1, \sigma _2\ge 0$.},
author = {Herceg, Dragoslav, Cvetković, Ljiljana},
journal = {Aplikace matematiky},
keywords = {accelerated overrelaxation method; AOR method; successive overrelaxation; rate of convergence; relaxation parameter; interval of convergence; iterative process; accelerated overrelaxation method; AOR method; successive overrelaxation; rate of convergence; relaxation parameter; interval of convergence},
language = {eng},
number = {6},
pages = {475-479},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of the accelerated overrelaxation method},
url = {http://eudml.org/doc/15603},
volume = {34},
year = {1989},
}
TY - JOUR
AU - Herceg, Dragoslav
AU - Cvetković, Ljiljana
TI - Convergence of the accelerated overrelaxation method
JO - Aplikace matematiky
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 6
SP - 475
EP - 479
AB - The convergence of the Accelerated Overrelaxation (AOR) method is discussed. It is shown that the intervals of convergence for the parameters $\sigma $ and $\omega $ are not always of the following form: $0\le \omega \le \omega _1, -\sigma _1\le \sigma \le \sigma _2, \sigma _1, \sigma _2\ge 0$.
LA - eng
KW - accelerated overrelaxation method; AOR method; successive overrelaxation; rate of convergence; relaxation parameter; interval of convergence; iterative process; accelerated overrelaxation method; AOR method; successive overrelaxation; rate of convergence; relaxation parameter; interval of convergence
UR - http://eudml.org/doc/15603
ER -
References
top- G. Avdelas A. Hadjidimos, Some theoretical and computational results concerning the accelerated overrelaxation (AOR) method, Anal. Numer. Theor. Approx. 9 (1980), 5-10. (1980) MR0617249
- Lj. Cvetkovič D. Herceg, Some sufficient conditions for convergence AOR-method, In: Numerical Methods and Approximation Theory, G. V. Milovanič, ed., Faculty of Electronic Engineering, Niš, 1984, 143-148. (1984) MR0805793
- Lj. Cvetkovič D. Herceg, Convergence theory for AOR method, Journal of Computational Mathematics (in print).
- Lj. Cvetkovič D. Herceg, An improvement for the area of convergence of the AOR method, Anal. Numer. Theor. Approx. 16 (1987), 109-115. (1987) MR0986095
- A. Hadjidimos, Accelerated overrelaxation method, Math. Соmр. 32 (1978), 149-157. (1978) Zbl0382.65015MR0483340
- S. Hague, 10.1093/imanum/7.3.307, IMA J. Numer. Anal. 7 (1987), 307-311. (1987) MR0968526DOI10.1093/imanum/7.3.307
- M. Martins, An improvement for the area of convergence of the accelerated overrelaxation iterative method, Anal. Numer. Theor. Approx. 12 (1983), 65 - 76. (1983) Zbl0527.65023MR0743917
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.