# On some properties of the solution of the differential equation ${u}^{\text{'}\text{'}}+\frac{2{u}^{\text{'}}}{r}=u-{u}^{3}$

Aplikace matematiky (1990)

- Volume: 35, Issue: 4, page 315-336
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topŠeda, Valter, and Pekár, Ján. "On some properties of the solution of the differential equation $u^{\prime \prime }+\frac{2u^{\prime }}{r}=u-u^3$." Aplikace matematiky 35.4 (1990): 315-336. <http://eudml.org/doc/15633>.

@article{Šeda1990,

abstract = {In the paper it is shown that each solution $u(r,\alpha )$ ot the initial value problem (2), (3) has a finite limit for $r\rightarrow \infty $, and an asymptotic formula for the nontrivial solution $u(r,\alpha )$ tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions $u(r,\bar\{\alpha \})$, $u(r,\hat\{\alpha \})$.},

author = {Šeda, Valter, Pekár, Ján},

journal = {Aplikace matematiky},

keywords = {spherically symmetric solution; trajectory of the solution; со-limit point of the trajectory; asymptotic formula; antitone and contractive operator; zero of the solution; Klein-Gordon equation; global behavior; Klein-Gordon equation; global behavior; asymptotic formulas; zeros of the solutions},

language = {eng},

number = {4},

pages = {315-336},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {On some properties of the solution of the differential equation $u^\{\prime \prime \}+\frac\{2u^\{\prime \}\}\{r\}=u-u^3$},

url = {http://eudml.org/doc/15633},

volume = {35},

year = {1990},

}

TY - JOUR

AU - Šeda, Valter

AU - Pekár, Ján

TI - On some properties of the solution of the differential equation $u^{\prime \prime }+\frac{2u^{\prime }}{r}=u-u^3$

JO - Aplikace matematiky

PY - 1990

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 35

IS - 4

SP - 315

EP - 336

AB - In the paper it is shown that each solution $u(r,\alpha )$ ot the initial value problem (2), (3) has a finite limit for $r\rightarrow \infty $, and an asymptotic formula for the nontrivial solution $u(r,\alpha )$ tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions $u(r,\bar{\alpha })$, $u(r,\hat{\alpha })$.

LA - eng

KW - spherically symmetric solution; trajectory of the solution; со-limit point of the trajectory; asymptotic formula; antitone and contractive operator; zero of the solution; Klein-Gordon equation; global behavior; Klein-Gordon equation; global behavior; asymptotic formulas; zeros of the solutions

UR - http://eudml.org/doc/15633

ER -

## References

top- Ch. V. Coffman, 10.1007/BF00250684, Arch. Rational Mech. Anal. 46 (1972), 81 - 95. (1972) MR0333489DOI10.1007/BF00250684
- L. Erbe K. Schmitt, On radial solutions of some semilinear elliptic equations, Differential and Integral Equations, Vol. 1 (1988), 71 - 78. (1988) MR0920490
- J. Chauvette F. Stenger, 10.1016/0022-247X(75)90155-9, J. Math. Anal. Appl. 51 (1975), 229-242. (1975) MR0373320DOI10.1016/0022-247X(75)90155-9
- G. H. Ryder, 10.2140/pjm.1967.22.477, Pacific J. Math. 22 (1967), 477-503. (1967) Zbl0152.28303MR0219794DOI10.2140/pjm.1967.22.477
- G. Sansone, Su un'equazione differenziale non lineare della fisica nucleare, Istituto Nazionale di Alta Matem. Sympozia Mathematica, Vol. VI, (1970). (1970)

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.