Global weak solvability to the regularized viscous compressible heat conductive flow
Jiří Neustupa; Antonín Novotný
Applications of Mathematics (1991)
- Volume: 36, Issue: 6, page 417-431
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNeustupa, Jiří, and Novotný, Antonín. "Global weak solvability to the regularized viscous compressible heat conductive flow." Applications of Mathematics 36.6 (1991): 417-431. <http://eudml.org/doc/15690>.
@article{Neustupa1991,
abstract = {The concept of regularization to the complete system of Navier-Stokes equations for viscous compressible heat conductive fluid is developed. The existence of weak solutions for the initial boundary value problem for the modified equations is proved. Some energy and etropy estimates independent of the parameter of regularization are derived.},
author = {Neustupa, Jiří, Novotný, Antonín},
journal = {Applications of Mathematics},
keywords = {compressible heat conductive fluid; global existence; initial or boundary value problems; energ inequality; regularization; Navier-Stokes equations; weak solutions; energy and entropy estimates; global existence; regularization; Navier-Stokes equations; compressible heat conductive fluid; weak solutions; energy and entropy estimates},
language = {eng},
number = {6},
pages = {417-431},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global weak solvability to the regularized viscous compressible heat conductive flow},
url = {http://eudml.org/doc/15690},
volume = {36},
year = {1991},
}
TY - JOUR
AU - Neustupa, Jiří
AU - Novotný, Antonín
TI - Global weak solvability to the regularized viscous compressible heat conductive flow
JO - Applications of Mathematics
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 6
SP - 417
EP - 431
AB - The concept of regularization to the complete system of Navier-Stokes equations for viscous compressible heat conductive fluid is developed. The existence of weak solutions for the initial boundary value problem for the modified equations is proved. Some energy and etropy estimates independent of the parameter of regularization are derived.
LA - eng
KW - compressible heat conductive fluid; global existence; initial or boundary value problems; energ inequality; regularization; Navier-Stokes equations; weak solutions; energy and entropy estimates; global existence; regularization; Navier-Stokes equations; compressible heat conductive fluid; weak solutions; energy and entropy estimates
UR - http://eudml.org/doc/15690
ER -
References
top- S. Agmon A. Douglis L. Nirenberg, 10.1002/cpa.3160170104, Comm. Pure Appl. Math. 17 (1964), 35-92. (1964) MR0162050DOI10.1002/cpa.3160170104
- A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, INC (1964). (1964) Zbl0144.34903MR0181836
- A. Kufner O. John S. Fučík, Function spaces, Praha, Academia (1977). (1977) MR0482102
- O. A. Ladzhenskaya V. A. Solonnikov N. N. Uralceva, Linear and quasilinear equations of parabolic type, (Russian). Moskva, Nauka (1967). (1967)
- J. L. Lions, Quelques méthodes des résolution des problèmes aux limites non linéaires, Dunod, Paris (1969). (1969) MR0259693
- A. Matsumura T. Nishida, 10.1007/BF01214738, Comm. Math. Phys. 89 (1983), 445 - 464. (1983) MR0713680DOI10.1007/BF01214738
- A. Matsumura T. Nishida, 10.1215/kjm/1250522322, J. Math. Kyoto Univ. 20 (1980), 67-104. (1980) MR0564670DOI10.1215/kjm/1250522322
- S. Mizohata, Theory of partial differential equations, (Russian). Moskva, Mir (1977). (1977)
- J. Nečas A. Novotný M. Šilhavý, Global solution to the compressible isothermal multipolar fluid, to appear J. Math. Anal. Appl. (1991). (1991) MR1135273
- J. Nečas M. Šilhavý, Multipolar viscous fluids, to appear Quart. Appl. Math. MR1106391
- J. Neustupa, The global weak solvability of a regularized system of the Navier-Stokes equations for compressible fluid, Apl. Mat. 33 (1988), 389-409. (1988) MR0961316
- J. Neustupa A. Novotný, Uniqueness to the regularized viscous compressible heat conductive flow, to appear.
- M. Padula, 10.1016/0022-1236(86)90108-4, J. Funct. Anal. 69 (1986), 1-20. (1986) MR0864756DOI10.1016/0022-1236(86)90108-4
- R. Rautman, 10.1007/BFb0087652, Lecture Notes in Math. Vol. 561, Springer-Verlag (1976). (1976) MR0463727DOI10.1007/BFb0087652
- A. Tani, 10.2977/prims/1195190106, Publ. RIMS Kyoto Univ. 13 (1977), 193 - 253. (1977) Zbl0366.35070DOI10.2977/prims/1195190106
- R. Temam, Navier-Stokes equations, Amsterdam-New York-Oxford (1979). (1979) Zbl0454.35073
- A. Valli, 10.1007/BF01761495, Ann. Mat. Рurа Appl. 130 (1982), 197-213. (1982) Zbl0599.76082MR0663971DOI10.1007/BF01761495
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.