On an inequality and the related characterization of the gamma distribution
Applications of Mathematics (1993)
- Volume: 38, Issue: 1, page 11-18
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKoicheva, Maia. "On an inequality and the related characterization of the gamma distribution." Applications of Mathematics 38.1 (1993): 11-18. <http://eudml.org/doc/15732>.
@article{Koicheva1993,
abstract = {In this paper we derive conditions upon the nonnegative random variable under which the inequality $Dg(\xi )\le cE\left[g^\{\prime \}\left(\xi \right)\right]^2\xi $ holds for a fixed nonnegative constant $c$ and for any absolutely continuous function $g$. Taking into account the characterization of a Gamma distribution we consider the functional $U_\xi = \sup _g \frac\{Dg\left(\xi \right)\}\{E\left[g^\{\prime \}\left(\xi \right)\right]^2\xi \}$ and establishing some of its properties we show that $U_\xi \ge 1$ and that $U_\xi =1$ iff the random variable $\xi $ has a Gamma distribution.},
author = {Koicheva, Maia},
journal = {Applications of Mathematics},
keywords = {characterizations; Gamma distribution; characterization of a gamma distribution},
language = {eng},
number = {1},
pages = {11-18},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an inequality and the related characterization of the gamma distribution},
url = {http://eudml.org/doc/15732},
volume = {38},
year = {1993},
}
TY - JOUR
AU - Koicheva, Maia
TI - On an inequality and the related characterization of the gamma distribution
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 1
SP - 11
EP - 18
AB - In this paper we derive conditions upon the nonnegative random variable under which the inequality $Dg(\xi )\le cE\left[g^{\prime }\left(\xi \right)\right]^2\xi $ holds for a fixed nonnegative constant $c$ and for any absolutely continuous function $g$. Taking into account the characterization of a Gamma distribution we consider the functional $U_\xi = \sup _g \frac{Dg\left(\xi \right)}{E\left[g^{\prime }\left(\xi \right)\right]^2\xi }$ and establishing some of its properties we show that $U_\xi \ge 1$ and that $U_\xi =1$ iff the random variable $\xi $ has a Gamma distribution.
LA - eng
KW - characterizations; Gamma distribution; characterization of a gamma distribution
UR - http://eudml.org/doc/15732
ER -
References
top- H. Chernoff, 10.1214/aop/1176994428, Ann. Probab. 9 (3) (1981), 533-535. (1981) Zbl0457.60014MR0614640DOI10.1214/aop/1176994428
- A. A. Borovkov S. A. Utev, On an inequality and a related characterization of the normal distribution, Theory of Probab. and its Appl. 28 (2) (1983), 219-228. (1983) MR0700206
- T. Cacoullos, 10.1214/aop/1176993788, Ann. Probab. 10(1982), 799-809. (1982) Zbl0492.60021MR0659549DOI10.1214/aop/1176993788
- T. Cacoullos V. Papathanasiou, 10.1016/0167-7152(85)90014-8, Statistics and Probability Letters 3 (1985), 175-184. (1985) MR0801687DOI10.1016/0167-7152(85)90014-8
- L. Chen, 10.1016/0047-259X(82)90022-7, J. Multivariate Anal. 12 (1982), 306-315. (1982) Zbl0483.60011MR0661566DOI10.1016/0047-259X(82)90022-7
- B. L. S. Prakasa Rao M. Sreehari, 10.1016/0167-7152(86)90068-4, Statistics and Probability Letters 4 (1986), 209-210. (1986) MR0848719DOI10.1016/0167-7152(86)90068-4
- B. L. S. Prakasa Rao M. Sreehari, 10.1111/j.1467-842X.1987.tb00718.x, Aus. J. Statist. 29 (1987), 38-41. (1987) MR0899374DOI10.1111/j.1467-842X.1987.tb00718.x
- T. Cacoullos V. Papathanasiou, 10.1016/0167-7152(89)90050-3, Statistics and Probability Letters 7 (5) (1989), 351-356. (1989) MR1001133DOI10.1016/0167-7152(89)90050-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.