On the existence of chaotic behaviour of diffeomorphisms
Applications of Mathematics (1993)
- Volume: 38, Issue: 2, page 101-122
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFečkan, Michal. "On the existence of chaotic behaviour of diffeomorphisms." Applications of Mathematics 38.2 (1993): 101-122. <http://eudml.org/doc/15739>.
@article{Fečkan1993,
abstract = {For several specific mappings we show their chaotic behaviour by detecting the existence of their transversal homoclinic points. Our approach has an analytical feature based on the method of Lyapunov-Schmidt.},
author = {Fečkan, Michal},
journal = {Applications of Mathematics},
keywords = {bifurcations; homoclinic orbits; chaotic behaviour; chaos; bifurcation; diffeomorphisms; homoclinic orbits},
language = {eng},
number = {2},
pages = {101-122},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the existence of chaotic behaviour of diffeomorphisms},
url = {http://eudml.org/doc/15739},
volume = {38},
year = {1993},
}
TY - JOUR
AU - Fečkan, Michal
TI - On the existence of chaotic behaviour of diffeomorphisms
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 2
SP - 101
EP - 122
AB - For several specific mappings we show their chaotic behaviour by detecting the existence of their transversal homoclinic points. Our approach has an analytical feature based on the method of Lyapunov-Schmidt.
LA - eng
KW - bifurcations; homoclinic orbits; chaotic behaviour; chaos; bifurcation; diffeomorphisms; homoclinic orbits
UR - http://eudml.org/doc/15739
ER -
References
top- K. R. Meyer & C. R. Sell, Melnikov transforms, Bernoulli bundles, and almost periodic perturbations, Trans. Amer. Math. Soc. 314 (1) (1989), 63-105. (1989) MR0954601
- K. J. Palmer, 10.1007/978-3-322-96656-8_5, Dynamics Reported 1 (1988), 265-306. (1988) Zbl0676.58025MR0945967DOI10.1007/978-3-322-96656-8_5
- K. J. Palmer, 10.1016/0022-0396(84)90082-2, J. Diff. Equations 55 (1984), 225-256. (1984) Zbl0508.58035MR0764125DOI10.1016/0022-0396(84)90082-2
- S. N. Chow, J . K. Hale & J. Mallet-Paret, 10.1016/0022-0396(80)90104-7, J. Diff. Equations 37 (1980), 351-373. (1980) MR0589997DOI10.1016/0022-0396(80)90104-7
- M. Fečkan, Bifurcations of heteroclinic orbits for diffeomorfisms, Aplikace Matematiky 36 (1991), 355-367. (1991) MR1125637
- S. Smale, Diffeomorphisms with infinitely many periodic points, in Differential and Combinatorical Topology, Princeton Univ. Press, New Jersey, 1963, pp. 63-80. (1963) MR0182020
- C. Pugh M. Shub & M. W. Hirsch, Invariant Manifolds, Lec. Not. Math. 583, Springer- -Verlag, New York, 1977. (1977) MR0501173
- S. Wiggins, 10.1007/978-1-4612-1042-9, Appl. Math. Sci. 73, Springer- Verlag, New York, 1988. (1988) Zbl0661.58001MR0956468DOI10.1007/978-1-4612-1042-9
- D. Henry, 10.1007/BFb0089647, Lec. Not. Math. 840, Springer- Verlag, New York, 1981. (1981) Zbl0456.35001MR0610244DOI10.1007/BFb0089647
- M. W. Hirsh & S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974. (1974) MR0486784
- M. L. Glasser V. G. Papageoriou & T. C. Bountis, 10.1137/0149040, SIAM J. Appl. Math. 49 (1989), 692-703. (1989) MR0997915DOI10.1137/0149040
- M. Medveď, Dynamical Systems, Veda, Bratislava, 1988. (In Slovak.) (1988) MR0982929
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.