Area of contraction of Newton's method applied to a penalty technique for obstacle problems
Klaus Böhmer; Christian Grossmann
Applications of Mathematics (1993)
- Volume: 38, Issue: 6, page 428-439
- ISSN: 0862-7940
Access Full Article
topHow to cite
topBöhmer, Klaus, and Grossmann, Christian. "Area of contraction of Newton's method applied to a penalty technique for obstacle problems." Applications of Mathematics 38.6 (1993): 428-439. <http://eudml.org/doc/15763>.
@article{Böhmer1993,
author = {Böhmer, Klaus, Grossmann, Christian},
journal = {Applications of Mathematics},
keywords = {penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction; penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction},
language = {eng},
number = {6},
pages = {428-439},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Area of contraction of Newton's method applied to a penalty technique for obstacle problems},
url = {http://eudml.org/doc/15763},
volume = {38},
year = {1993},
}
TY - JOUR
AU - Böhmer, Klaus
AU - Grossmann, Christian
TI - Area of contraction of Newton's method applied to a penalty technique for obstacle problems
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 6
SP - 428
EP - 439
LA - eng
KW - penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction; penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction
UR - http://eudml.org/doc/15763
ER -
References
top- Adam S., Numerische Verfahren für Variationsungleichungen, Dipl. thesis, TU Dresden, 1992. (1992)
- Allgower E. L., Böhmer K., 10.1137/0724086, SIAM J.Numer.Anal. 24 (1987), 1335-1351. (1987) MR0917455DOI10.1137/0724086
- Baiocchi C., Estimation d’erreur dans pour les inéquations a obstacle, In Lecture Notes Math., vol. 606, 1977, pp. 27-34. (1977) MR0488847
- Brezzi F., Fortin M, Mixed and hybrid finite element methods, Springer, Berlin, 1991. (1991) Zbl0788.73002MR1115205
- Ciarlet P., The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- Deuflhard P., Potra F. A., Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem, Preprint SC 90-9, Konrad-Zuse-Zentrum, Berlin, 1990. (1990) MR1182736
- Grossmann C., Kaplan A. A., 10.1007/BF02240196, Computing 35 (1985), 295-306. (1985) Zbl0569.65050MR0825117DOI10.1007/BF02240196
- Grossmann C., Roos H.-G., Numerik partieller Differentialgleichungen, Teubner, Stuttgart, 1992. (1992) Zbl0755.65087MR1219087
- Haslinger J., Mixed formulation of elliptic variational inequalities and its approximation, Applikace Mat. 26 (1981), 462-475. (1981) Zbl0483.49003MR0634283
- Hlaváček I., Haslinger J., Nečas J., Lovíšek J., Numerical solution of variational inequalities, Springer, Berlin, 1988. (1988)
- Windisch G., M-matrices in numerical analysis, Teubner, Leipzig, 1989. (1989) MR1059459
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.