Area of contraction of Newton's method applied to a penalty technique for obstacle problems

Klaus Böhmer; Christian Grossmann

Applications of Mathematics (1993)

  • Volume: 38, Issue: 6, page 428-439
  • ISSN: 0862-7940

How to cite

top

Böhmer, Klaus, and Grossmann, Christian. "Area of contraction of Newton's method applied to a penalty technique for obstacle problems." Applications of Mathematics 38.6 (1993): 428-439. <http://eudml.org/doc/15763>.

@article{Böhmer1993,
author = {Böhmer, Klaus, Grossmann, Christian},
journal = {Applications of Mathematics},
keywords = {penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction; penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction},
language = {eng},
number = {6},
pages = {428-439},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Area of contraction of Newton's method applied to a penalty technique for obstacle problems},
url = {http://eudml.org/doc/15763},
volume = {38},
year = {1993},
}

TY - JOUR
AU - Böhmer, Klaus
AU - Grossmann, Christian
TI - Area of contraction of Newton's method applied to a penalty technique for obstacle problems
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 6
SP - 428
EP - 439
LA - eng
KW - penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction; penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction
UR - http://eudml.org/doc/15763
ER -

References

top
  1. Adam S., Numerische Verfahren für Variationsungleichungen, Dipl. thesis, TU Dresden, 1992. (1992) 
  2. Allgower E. L., Böhmer K., 10.1137/0724086, SIAM J.Numer.Anal. 24 (1987), 1335-1351. (1987) MR0917455DOI10.1137/0724086
  3. Baiocchi C., Estimation d’erreur dans L pour les inéquations a obstacle, In Lecture Notes Math., vol. 606, 1977, pp. 27-34. (1977) MR0488847
  4. Brezzi F., Fortin M, Mixed and hybrid finite element methods, Springer, Berlin, 1991. (1991) Zbl0788.73002MR1115205
  5. Ciarlet P., The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
  6. Deuflhard P., Potra F. A., Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem, Preprint SC 90-9, Konrad-Zuse-Zentrum, Berlin, 1990. (1990) MR1182736
  7. Grossmann C., Kaplan A. A., 10.1007/BF02240196, Computing 35 (1985), 295-306. (1985) Zbl0569.65050MR0825117DOI10.1007/BF02240196
  8. Grossmann C., Roos H.-G., Numerik partieller Differentialgleichungen, Teubner, Stuttgart, 1992. (1992) Zbl0755.65087MR1219087
  9. Haslinger J., Mixed formulation of elliptic variational inequalities and its approximation, Applikace Mat. 26 (1981), 462-475. (1981) Zbl0483.49003MR0634283
  10. Hlaváček I., Haslinger J., Nečas J., Lovíšek J., Numerical solution of variational inequalities, Springer, Berlin, 1988. (1988) 
  11. Windisch G., M-matrices in numerical analysis, Teubner, Leipzig, 1989. (1989) MR1059459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.