Experiments with Krylov subspace methods on a massively parallel computer
Martin Hanke; Marlis Hochbruck; Wilhelm Niethammer
Applications of Mathematics (1993)
- Volume: 38, Issue: 6, page 440-451
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHanke, Martin, Hochbruck, Marlis, and Niethammer, Wilhelm. "Experiments with Krylov subspace methods on a massively parallel computer." Applications of Mathematics 38.6 (1993): 440-451. <http://eudml.org/doc/15764>.
@article{Hanke1993,
abstract = {In this note, we compare some Krylov subspace iterative methods on the MASPAR, a massively parallel computer with 16K processors. In particular, we apply these methods to solve large sparse nonsymmetric linear systems arising from elliptic partial differential equations. The methods under consideration include conjugate gradient type methods, semiiterative methods, and a hybrid variant. Our numerical results show that, on the MASPAR, one should compare iterative methods rather on the basis of total computing time than on the basis of number of iterations required to achieve a given accuracy. Our limited numerical experiments here suggest that, in terms of total computing time, semiiterative and hybrid methods are very attractive for such MASPAR implementations.},
author = {Hanke, Martin, Hochbruck, Marlis, Niethammer, Wilhelm},
journal = {Applications of Mathematics},
keywords = {massively parallel computers; iterative methods; nonsymmetric linear systems; Krylov subspace methods; preconditionings; parallel computation; Krylov subspace iterative methods; conjugate gradient type methods; BiCGStab; semiiterative methods; GMRES-Richardson method; successive overrelaxation; red-black ordering; parallel computation; Krylov subspace iterative methods; conjugate gradient type methods; BiCGStab; semiiterative methods; GMRES-Richardson method; preconditioning; successive overrelaxation; red-black ordering},
language = {eng},
number = {6},
pages = {440-451},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Experiments with Krylov subspace methods on a massively parallel computer},
url = {http://eudml.org/doc/15764},
volume = {38},
year = {1993},
}
TY - JOUR
AU - Hanke, Martin
AU - Hochbruck, Marlis
AU - Niethammer, Wilhelm
TI - Experiments with Krylov subspace methods on a massively parallel computer
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 6
SP - 440
EP - 451
AB - In this note, we compare some Krylov subspace iterative methods on the MASPAR, a massively parallel computer with 16K processors. In particular, we apply these methods to solve large sparse nonsymmetric linear systems arising from elliptic partial differential equations. The methods under consideration include conjugate gradient type methods, semiiterative methods, and a hybrid variant. Our numerical results show that, on the MASPAR, one should compare iterative methods rather on the basis of total computing time than on the basis of number of iterations required to achieve a given accuracy. Our limited numerical experiments here suggest that, in terms of total computing time, semiiterative and hybrid methods are very attractive for such MASPAR implementations.
LA - eng
KW - massively parallel computers; iterative methods; nonsymmetric linear systems; Krylov subspace methods; preconditionings; parallel computation; Krylov subspace iterative methods; conjugate gradient type methods; BiCGStab; semiiterative methods; GMRES-Richardson method; successive overrelaxation; red-black ordering; parallel computation; Krylov subspace iterative methods; conjugate gradient type methods; BiCGStab; semiiterative methods; GMRES-Richardson method; preconditioning; successive overrelaxation; red-black ordering
UR - http://eudml.org/doc/15764
ER -
References
top- D. Baxter J. Saltz M. Schultz S. Eisenstat, and K. Crowley, An experimental study of methods for parallel preconditioned Krylov methods, Tech. Rep. RR-629, Department of Computer Science, Yale University, 1988. (1988)
- M. Eiermann, 10.1007/BF01409782, Numer. Math. 56 (1989), 139-156. (1989) Zbl0678.65020MR1018298DOI10.1007/BF01409782
- M. Eiermann W. Niethammer, and R. S. Varga, 10.1007/BF01389454, Numer. Math. 47 (1985), 505-533. (1985) MR0812617DOI10.1007/BF01389454
- V. Faber, T. Manteuffel, 10.1137/0721026, SIAM J. Numer. Anal. 21 (1984), 352-362. (1984) Zbl0546.65010MR0736337DOI10.1137/0721026
- R. W. Freund G. H. Golub, and N. M. Nachtigal, 10.1017/S0962492900002245, Acta Numerica 1 (1992), 57-100. (1992) MR1165723DOI10.1017/S0962492900002245
- R. W. Freund M. H. Gutknecht, and N. M. Nachtigal, 10.1137/0914009, SIAM J. Sci. Statist. Comput. 14 (1993), 137-158. (1993) MR1201315DOI10.1137/0914009
- R. W. Freund, N. M. Nachtigal, 10.1007/BF01385726, Numer. Math. 60 (1991), 315-339. (1991) Zbl0754.65034MR1137197DOI10.1007/BF01385726
- M. R. Hestenes, E. Stiefel, 10.6028/jres.049.044, J. Res. Nat. Bur. Standards 49 (1952), 409-436. (1952) Zbl0048.09901MR0060307DOI10.6028/jres.049.044
- C. Lanczos, 10.6028/jres.045.026, J. Res. Nat. Bur. Standards 45 (1950), 255-282. (1950) MR0042791DOI10.6028/jres.045.026
- T. A. Manteuffel, 10.1007/BF01389971, Numer. Math. 28 (1977), 307-327. (1977) Zbl0361.65024MR0474739DOI10.1007/BF01389971
- N. M. Nachtigal L. Reichel, L. N. Trefethen, 10.1137/0613050, SIAM J. Matrix Anal. Appl. 13 (1992), 796-825. (1992) MR1168080DOI10.1137/0613050
- W. Niethammer, Iterative solution of non-symmetric systems of linear equations, In: Numerical Mathematics, Singapore 1988 (R. P. Agarwal, Y. M. Chow and S. J. Wilson, eds.), Birkhäuser, Basel, 1988, pp. 381-390. (1988) Zbl0657.65050MR1022970
- W. Niethammer, R. S. Varga, 10.1007/BF01390212, Numer. Math. 41 (1983), 177-206. (1983) Zbl0487.65018MR0703121DOI10.1007/BF01390212
- J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press, New York, London, 1988. (1988) Zbl0669.65017MR1106195
- Y. Saad, M. H. Schultz, 10.1137/0907058, SIAM J. Sci. Statist. Comput. 7 (1986), 856-869. (1986) Zbl0599.65018MR0848568DOI10.1137/0907058
- D. C. Smolarski, P. E. Saylor, 10.1007/BF01934703, BIT 28 (1988), 163-178. (1988) Zbl0636.65025MR0928443DOI10.1007/BF01934703
- G. Starke, R. S. Varga, 10.1007/BF01388688, Numer. Math. 64 (1993), 213-240. (1993) Zbl0795.65015MR1199286DOI10.1007/BF01388688
- C. Tong, The preconditioned conjugate gradient method on the Connection Machine, In: Proceedings of the Conference on Scientific Applications of the Connection Machine (H. Simon, ed.), World Scientific, Singapore, New Jersey, London, Hong Kong, 1989, pp. 188-213. (1989) Zbl0725.65033
- H. A. Van der Vorst, 10.1137/0913035, SIAM J. Sci. Statist. Comput. 13 (1992), 631-644. (1992) Zbl0761.65023MR1149111DOI10.1137/0913035
- R. S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1962. (1962) MR0158502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.