A parameter choice for Tikhonov regularization for solving nonlinear inverse problems leading to optimal convergence rates
Applications of Mathematics (1993)
- Volume: 38, Issue: 6, page 479-487
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topScherzer, Otmar. "A parameter choice for Tikhonov regularization for solving nonlinear inverse problems leading to optimal convergence rates." Applications of Mathematics 38.6 (1993): 479-487. <http://eudml.org/doc/15768>.
@article{Scherzer1993,
abstract = {We give a derivation of an a-posteriori strategy for choosing the regularization parameter in Tikhonov regularization for solving nonlinear ill-posed problems, which leads to optimal convergence rates. This strategy requires a special stability estimate for the regularized solutions. A new proof fot this stability estimate is given.},
author = {Scherzer, Otmar},
journal = {Applications of Mathematics},
keywords = {nonlinear inverse problems; parameter choice strategy; nonlinear ill- posed problems; Hilbert spaces; Tikhonov regularization; convergence rate; numerical examples; nonlinear inverse problems; parameter choice strategy; nonlinear ill- posed problems; Hilbert spaces; Tikhonov regularization; convergence rate; numerical examples},
language = {eng},
number = {6},
pages = {479-487},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A parameter choice for Tikhonov regularization for solving nonlinear inverse problems leading to optimal convergence rates},
url = {http://eudml.org/doc/15768},
volume = {38},
year = {1993},
}
TY - JOUR
AU - Scherzer, Otmar
TI - A parameter choice for Tikhonov regularization for solving nonlinear inverse problems leading to optimal convergence rates
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 6
SP - 479
EP - 487
AB - We give a derivation of an a-posteriori strategy for choosing the regularization parameter in Tikhonov regularization for solving nonlinear ill-posed problems, which leads to optimal convergence rates. This strategy requires a special stability estimate for the regularized solutions. A new proof fot this stability estimate is given.
LA - eng
KW - nonlinear inverse problems; parameter choice strategy; nonlinear ill- posed problems; Hilbert spaces; Tikhonov regularization; convergence rate; numerical examples; nonlinear inverse problems; parameter choice strategy; nonlinear ill- posed problems; Hilbert spaces; Tikhonov regularization; convergence rate; numerical examples
UR - http://eudml.org/doc/15768
ER -
References
top- H. W. Engl H. Gfrerer, 10.1016/0168-9274(88)90017-7, Appl. Num. Math. 4 (1988), 395-417. (1988) MR0948506DOI10.1016/0168-9274(88)90017-7
- H. W. Engl K. Kunisch A. Neubauer, Convergence rates for Tikhonov regularization of nonlinears ill-posed problems, Inverse Problems 5 (1989), 523-540. (1989) MR1009037
- H. Gfrerer, 10.1090/S0025-5718-1987-0906185-4, Mathematics of Computation 49 (1987), 507-522. (1987) Zbl0631.65057MR0906185DOI10.1090/S0025-5718-1987-0906185-4
- C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, 1984. (1984) Zbl0545.65034MR0742928
- A. Neubauer, Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation, Inverse Problems 5 (1989), 541-557. (1989) MR1009038
- O. Scherzer H. W. Engl K. Kunisch, Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. on Numer. Anal., to appear. MR1249043
- T. L Seidman C. R. Vogel, Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems, Inverse Problems 5 (1989), 227-238. (1989) MR0991919
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.