Consistency theorems connected with some combinatorial problems

Lev Bukovský

Commentationes Mathematicae Universitatis Carolinae (1966)

  • Volume: 007, Issue: 4, page 495-499
  • ISSN: 0010-2628

How to cite

top

Bukovský, Lev. "Consistency theorems connected with some combinatorial problems." Commentationes Mathematicae Universitatis Carolinae 007.4 (1966): 495-499. <http://eudml.org/doc/16188>.

@article{Bukovský1966,
author = {Bukovský, Lev},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {set theory},
language = {eng},
number = {4},
pages = {495-499},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Consistency theorems connected with some combinatorial problems},
url = {http://eudml.org/doc/16188},
volume = {007},
year = {1966},
}

TY - JOUR
AU - Bukovský, Lev
TI - Consistency theorems connected with some combinatorial problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1966
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 007
IS - 4
SP - 495
EP - 499
LA - eng
KW - set theory
UR - http://eudml.org/doc/16188
ER -

References

top
  1. P. ERDÖS A. HAJNAL R. RADO, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hung., 16 (1965), 93-196. (1965) MR0202613
  2. K. GÖDEL, The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, Ann. of Math. Studies, Princeton 1940. (1940) 
  3. A. HAJNAL, On a consistency theorem connected with the generalized, continuum problem, Acta Math. Acad. Sci. Hung., 12 (1961), 321-376. (1961) Zbl0102.25001MR0150046
  4. K. HRBÁČEK, Model [ ω α ω β ] in which β is limit number, CMUC, 6 (1965), 439-442. (1965) MR0200136
  5. J. MYCIELSKI, On the axiom of determinateness, Fund. Math., 53 (1964), 205-224. (1964) Zbl0168.25101MR0161787
  6. P. VOPĚNKA, -models in which the generalized continuum hypothesis does not hold, Bull. Acad. Sci. Polon., 14 (1966), 95-99. (1966) MR0200142

NotesEmbed ?

top

You must be logged in to post comments.