On norms and subsets of linear spaces

Josef Daneš

Commentationes Mathematicae Universitatis Carolinae (1971)

  • Volume: 012, Issue: 4, page 835-844
  • ISSN: 0010-2628

How to cite

top

Daneš, Josef. "On norms and subsets of linear spaces." Commentationes Mathematicae Universitatis Carolinae 012.4 (1971): 835-844. <http://eudml.org/doc/16468>.

@article{Daneš1971,
author = {Daneš, Josef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {4},
pages = {835-844},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On norms and subsets of linear spaces},
url = {http://eudml.org/doc/16468},
volume = {012},
year = {1971},
}

TY - JOUR
AU - Daneš, Josef
TI - On norms and subsets of linear spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1971
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 012
IS - 4
SP - 835
EP - 844
LA - eng
UR - http://eudml.org/doc/16468
ER -

References

top
  1. ALEXIEWICZ A., Functional Analysis, (in Polish), PWN, Warsaw, 1969. (1969) 
  2. BESSAGA C., KLEE V., Two topological properties of linear spaces, Israel J. Math. 2 (1964), 211-220. (1964) MR0180825
  3. DANEŠ J., Nonlinear operators and functionals, Thesis, Charles University, Prague, 1968 (in Czech). (1968) 
  4. DANEŠ J., Continuity properties of nonlinear mappings, Comment. Math. Univ. Carolinae 9 (1968), 353-364. (1968) MR0236779
  5. DUNFORD N., SCHWARTZ J. T., Linear Operators. Vol. I., Interscience Publ., New York, 1958. (1958) MR0117523
  6. HILLE E., PHILLIPS R. S., Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publ., vol. XXXI, Providence, B. I., J957. Zbl0078.10004
  7. KLEE V., A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 735-737. (1956) Zbl0070.11103MR0078661
  8. KRASNOSELSKII M. A., RUTICKII Ia. B., Convex Functions and Orlicz's Spaces, (in Russian), Gostehizdat, Moscow, 1956. (1956) 
  9. SCHAEFER H. H., Topological Vector Spaces, The Macmillan Comp., New York, 1966. (1966) Zbl0141.30503MR0193469
  10. ZEMÁNEK J., Nowhere dense set which is finitely open, Comment. Math. Univ. Carolinae 11 (1970), 83-89. (1970) MR0261329

NotesEmbed ?

top

You must be logged in to post comments.