On norms and subsets of linear spaces

Josef Daneš

Commentationes Mathematicae Universitatis Carolinae (1971)

  • Volume: 012, Issue: 4, page 835-844
  • ISSN: 0010-2628

How to cite


Daneš, Josef. "On norms and subsets of linear spaces." Commentationes Mathematicae Universitatis Carolinae 012.4 (1971): 835-844. <http://eudml.org/doc/16468>.

author = {Daneš, Josef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {4},
pages = {835-844},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On norms and subsets of linear spaces},
url = {http://eudml.org/doc/16468},
volume = {012},
year = {1971},

AU - Daneš, Josef
TI - On norms and subsets of linear spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1971
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 012
IS - 4
SP - 835
EP - 844
LA - eng
UR - http://eudml.org/doc/16468
ER -


  1. ALEXIEWICZ A., Functional Analysis, (in Polish), PWN, Warsaw, 1969. (1969) 
  2. BESSAGA C., KLEE V., Two topological properties of linear spaces, Israel J. Math. 2 (1964), 211-220. (1964) MR0180825
  3. DANEŠ J., Nonlinear operators and functionals, Thesis, Charles University, Prague, 1968 (in Czech). (1968) 
  4. DANEŠ J., Continuity properties of nonlinear mappings, Comment. Math. Univ. Carolinae 9 (1968), 353-364. (1968) MR0236779
  5. DUNFORD N., SCHWARTZ J. T., Linear Operators. Vol. I., Interscience Publ., New York, 1958. (1958) MR0117523
  6. HILLE E., PHILLIPS R. S., Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publ., vol. XXXI, Providence, B. I., J957. Zbl0078.10004
  7. KLEE V., A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 735-737. (1956) Zbl0070.11103MR0078661
  8. KRASNOSELSKII M. A., RUTICKII Ia. B., Convex Functions and Orlicz's Spaces, (in Russian), Gostehizdat, Moscow, 1956. (1956) 
  9. SCHAEFER H. H., Topological Vector Spaces, The Macmillan Comp., New York, 1966. (1966) Zbl0141.30503MR0193469
  10. ZEMÁNEK J., Nowhere dense set which is finitely open, Comment. Math. Univ. Carolinae 11 (1970), 83-89. (1970) MR0261329

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.