On the iterative construction of a solution of nonlinear elliptic boundary value problems

Walter Petry

Commentationes Mathematicae Universitatis Carolinae (1972)

  • Volume: 013, Issue: 3, page 479-492
  • ISSN: 0010-2628

How to cite

top

Petry, Walter. "On the iterative construction of a solution of nonlinear elliptic boundary value problems." Commentationes Mathematicae Universitatis Carolinae 013.3 (1972): 479-492. <http://eudml.org/doc/16512>.

@article{Petry1972,
author = {Petry, Walter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {3},
pages = {479-492},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the iterative construction of a solution of nonlinear elliptic boundary value problems},
url = {http://eudml.org/doc/16512},
volume = {013},
year = {1972},
}

TY - JOUR
AU - Petry, Walter
TI - On the iterative construction of a solution of nonlinear elliptic boundary value problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1972
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 013
IS - 3
SP - 479
EP - 492
LA - eng
UR - http://eudml.org/doc/16512
ER -

References

top
  1. BROWDER F. E., Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874. (1963) Zbl0127.31901MR0156116
  2. BROWDER F. E., Nonlinear elliptic boundary value problems II, Trans. Amer. Math. Soc. 117 (1965), 530-550. (1965) Zbl0127.31903MR0173846
  3. BROWDER F. E., Existence theorems for nonlinear partial differential equations, Proc. Sympos. Pure Math., vol. 16, Amer. Math. Soc. Providence, R. I., 1970, 1-60. (1970) Zbl0211.17204MR0269962
  4. BROWDER F. R., Nonlinear elliptic boundary value problems and the generalized topological degree, Bull. Amer. Math. Soc. 76 (1970), 999-1005. (1970) Zbl0201.18401MR0264222
  5. DUBINSKII Yu. A., Quasilinear elliptic and parabolic equations of arbitrary order, Russian Math. Surveys 23 (1968), 45-91. (1968) MR0228826
  6. KOSELEV A. I., Convergence of the method of successive approximation for quasilinear elliptic equations, Soviet Math. Dokl. 3 (1962), 219-222. (1962) Zbl0125.05602
  7. KRATOCHVÍL A., Les méthodes approximatives de la solution des équations elliptiques non linéaires, Comment. Math. Univ. Caroline 9 (1968), 455-510. (1968) MR0240646
  8. LERAY J., LIONS J. L., Quelques résultats de VISIK sur les problèmes elliptiques non linéaires par les méthodes de MINTY-BROWDER, Bull. Soc. Math. France 93 (1965), 97-107. (1965) Zbl0132.10502MR0194733
  9. NEČAS J., Sur l'alternative de FREDHOLM pour les opérateurs non-linéaires avec applications aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa 23 (1969) 331-345. (1969) Zbl0187.08103MR0267430
  10. PETRY W., Iterative Lösung gewisser nichtlinearer Operatorgleichungen mit Anwendung auf quasilineare Differentialgleichungen, Aequationes Mathematicae 5 (1971), 16-38. (1971) MR0307465
  11. POHOŽAJEV S. I., The solvability of nonlinear equations with odd operators, Funct. Anal. Appl. 1 (1967), 66-73. (1967) 
  12. VIŠIK M. I., Boundary value problems for quasilinear strongly elliptic systems of divergent form, Dokl. Akad. Nauk SSSR 138 (1961), 18-521 (Russian). (1961) MR0150454
  13. VIŠIK M. I., Quasi-linear strongly elliptic systems of differential equations in divergence form, Trudy Moskov. Mat. Obsc. 12 (1963), 125-184 (Russian), (1963) MR0156085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.