Smoothability versus dentability
Commentationes Mathematicae Universitatis Carolinae (1973)
- Volume: 014, Issue: 1, page 127-133
- ISSN: 0010-2628
Access Full Article
topHow to cite
topEdelstein, Michael. "Smoothability versus dentability." Commentationes Mathematicae Universitatis Carolinae 014.1 (1973): 127-133. <http://eudml.org/doc/16550>.
@article{Edelstein1973,
author = {Edelstein, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {1},
pages = {127-133},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Smoothability versus dentability},
url = {http://eudml.org/doc/16550},
volume = {014},
year = {1973},
}
TY - JOUR
AU - Edelstein, Michael
TI - Smoothability versus dentability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1973
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 014
IS - 1
SP - 127
EP - 133
LA - eng
UR - http://eudml.org/doc/16550
ER -
References
top- E. ASPLUND, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. (1968) Zbl0162.17501MR0231199
- M. EDELSTEIN, Concerning dentability, Pac. J. Math. (To appear.) Zbl0259.46018MR0324378
- V. KLEE, Extremal structure of convex sets, Math. Zeitschr. 69 (1968), 90-104. (1968) MR0092113
- S. MAZUR, Über schwache Konvergenz in den Räumen , Studia Math. 4 (1933), 128-133. (1933)
- S. MAZUR, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84. (1933) Zbl0008.31603
- M. A. RIEFFEL, Dentable subsets of Banach spaces with applications to a Radon-Nikodym theorem, Proc. Conf. Punctional Anal., Thompson Book Co. Washington, 1967, pp. 71-77. (1967) MR0222618
- S. L. TROYANSKI, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1971), 173-179. (1971) Zbl0214.12701MR0306873
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.