Boundary value and periodic problem for the equation x ' ' ( t ) + g ( x ( t ) ) = p ( t )

Svatopluk Fučík; Vladimír Lovicar

Commentationes Mathematicae Universitatis Carolinae (1974)

  • Volume: 015, Issue: 2, page 351-355
  • ISSN: 0010-2628

How to cite

top

Fučík, Svatopluk, and Lovicar, Vladimír. "Boundary value and periodic problem for the equation $x^{\prime \prime }(t)+g(x(t))=p(t)$." Commentationes Mathematicae Universitatis Carolinae 015.2 (1974): 351-355. <http://eudml.org/doc/16627>.

@article{Fučík1974,
author = {Fučík, Svatopluk, Lovicar, Vladimír},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {2},
pages = {351-355},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Boundary value and periodic problem for the equation $x^\{\prime \prime \}(t)+g(x(t))=p(t)$},
url = {http://eudml.org/doc/16627},
volume = {015},
year = {1974},
}

TY - JOUR
AU - Fučík, Svatopluk
AU - Lovicar, Vladimír
TI - Boundary value and periodic problem for the equation $x^{\prime \prime }(t)+g(x(t))=p(t)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1974
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 015
IS - 2
SP - 351
EP - 355
LA - eng
UR - http://eudml.org/doc/16627
ER -

References

top
  1. A. AMBROSETTI G. PRODI, Analisi non lineare, I quaderno, Pisa 1973. (1973) 
  2. L. CESARI, Functional analysis and periodic solutions of nonlinear equations, Contributions to differential equations I (1963), 149-187. (1963) MR0151678
  3. S. FUČÍK, Nonlinear equations with noninvertible linear part, to appear in Czech. Math. Journal No 3 (1974). (1974) MR0348568
  4. S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK, Spectral analysis of nonlinear operators, Lecture Notes in Math. No 346, Springer Verlag 1973. (1973) MR0467421
  5. E. A. LANDESMAN A. C. LAZER, Nonlinear perturbations of linear elliptic boundary value problem at resonance, J. Math. Mech. 19 (1970), 609-623. (1970) MR0267269
  6. A. M. MICHELETTI, Le soluzioni periodiche dell’equazioni differenziale non lineare x ' ' ( t ) + 2 x 3 ( t ) = f ( t ) , Ann. Univ. Ferrara 12 (1967), 103-119. (1967) MR0223657
  7. G. R. MORRIS, A differential equation for undamped forced oscillation, Proc. Cambridge Phil. Soc. 51 (1955), p. 297, 54 (1958) p. 426, 61 (1965), P. 157, 62 (1965), p. 133. (1955) 
  8. J. NEČAS, On the range of nonlinear operators with linear asymptotes which are not invertible, Comment. Math. Univ. Carolinae 14 (1973), 63-72. (1973) MR0318995
  9. K. SCHMITT, A nonlinear boundary value problem, J. Diff. Equ. 7 (1970), 527-537. (1970) Zbl0198.12301MR0254314

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.