On collective compactness of derivatives
Commentationes Mathematicae Universitatis Carolinae (1976)
- Volume: 017, Issue: 1, page 7-30
- ISSN: 0010-2628
Access Full Article
topHow to cite
topDurdil, Jiří. "On collective compactness of derivatives." Commentationes Mathematicae Universitatis Carolinae 017.1 (1976): 7-30. <http://eudml.org/doc/16730>.
@article{Durdil1976,
author = {Durdil, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {1},
pages = {7-30},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On collective compactness of derivatives},
url = {http://eudml.org/doc/16730},
volume = {017},
year = {1976},
}
TY - JOUR
AU - Durdil, Jiří
TI - On collective compactness of derivatives
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1976
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 017
IS - 1
SP - 7
EP - 30
LA - eng
UR - http://eudml.org/doc/16730
ER -
References
top- P. M. ANSELONE, Collectively Compact Operator Approximation Theory and Applications to Integral Equations, Prentice-Hall, 1971. (1971) Zbl0228.47001MR0443383
- P. M. ANSELONE, Collectively compact and totally bounded sets of linear operators, J. Math. Mech. 17 (1968), 613-622. (1968) Zbl0159.43003MR0233231
- P. M. ANSELONE, Compactness properties of sets of operators and their adjoints, Math. Z. 113 (1970), 233-236. (1970) MR0261397
- P. M. ANSELONE R. H. MOORE, Approximate solutions of integral and operator equations, J. Math. Anal. Appl. 9 (1964), 268-277. (1964) MR0184448
- P. M. ANSELONE T. W. PALMER, Collectively compact sets of linear operators, Pac. J. Math. 25 (1968), 417-422. (1968) MR0227806
- P. M. ANSELONE T. W. PALMER, Spectral analysis of collectively compact strongly convergent operator sequences, Pac. J. Math. 25 (1968), 423-431. (1968) MR0227807
- J. W. DANIEL, Collectively compact sets of gradient mappings, Indag. Math. 30 (1968), 270-279. (1968) Zbl0157.45901MR0236758
- J. D. De PREE J. A. HIGGINS, Collectively compact sets of linear operators, Math. Z. 115 (1970), 366-370. (1970) MR0264425
- M. V. DESHPANDE N. E. JOSHI, Collectively compact and semi-compact sets of linear operators in topological vector spaces, Pac. J. Math. 43 (1972), 317-326. (1972) MR0324476
- M. A. KRASNOSELSKIJ J. B. RUTICKIJ, Convex Functions and Orlicz Spaces, Moscow, 1958 (Russian). (1958)
- J. LLOYD, Differentiable mappings on topological vector spaces, Studia Math. 45 (1973), 147-160 and 49 (1973-4), 99-100. (1973) Zbl0274.46033MR0333724
- R. H. MOORE, Differentiability and convergence of compact nonlinear operators, J. Math. Anal. Appl. 16 (1966), 65-72. (1966) MR0196549
- K. J. PALMER, On the complete continuity of differentiate mappings, J. Austr. Math. Soc. 9 (1969), 441-444. (1969) MR0243393
- M. VAINBERG, Variational Methods for the Study of Nonlinear Operators, Moscow, 1956 (Russian). (1956)
- V. I. AVERBUKH O. G. SMOLYANOV, The theory of differentiation in linear topological spaces, Usp. Mat. Nauk 22 (1967), 201-258 (Russian). (1967)
- V. I. AVERBUKH O. G. SMOLYANOV, The various definitions of the derivative in linear topological spaces, Usp. Mat. Nauk 23 (1968), 67-113 (Russian). (1968)
- M. Z. NASHED, Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... , in Nonlinear Functional Analysis and Applications (ed. J. B. Rall), New York 1971. (1971) MR0276840
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.