On collective compactness of derivatives

Jiří Durdil

Commentationes Mathematicae Universitatis Carolinae (1976)

  • Volume: 017, Issue: 1, page 7-30
  • ISSN: 0010-2628

How to cite

top

Durdil, Jiří. "On collective compactness of derivatives." Commentationes Mathematicae Universitatis Carolinae 017.1 (1976): 7-30. <http://eudml.org/doc/16730>.

@article{Durdil1976,
author = {Durdil, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {1},
pages = {7-30},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On collective compactness of derivatives},
url = {http://eudml.org/doc/16730},
volume = {017},
year = {1976},
}

TY - JOUR
AU - Durdil, Jiří
TI - On collective compactness of derivatives
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1976
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 017
IS - 1
SP - 7
EP - 30
LA - eng
UR - http://eudml.org/doc/16730
ER -

References

top
  1. P. M. ANSELONE, Collectively Compact Operator Approximation Theory and Applications to Integral Equations, Prentice-Hall, 1971. (1971) Zbl0228.47001MR0443383
  2. P. M. ANSELONE, Collectively compact and totally bounded sets of linear operators, J. Math. Mech. 17 (1968), 613-622. (1968) Zbl0159.43003MR0233231
  3. P. M. ANSELONE, Compactness properties of sets of operators and their adjoints, Math. Z. 113 (1970), 233-236. (1970) MR0261397
  4. P. M. ANSELONE R. H. MOORE, Approximate solutions of integral and operator equations, J. Math. Anal. Appl. 9 (1964), 268-277. (1964) MR0184448
  5. P. M. ANSELONE T. W. PALMER, Collectively compact sets of linear operators, Pac. J. Math. 25 (1968), 417-422. (1968) MR0227806
  6. P. M. ANSELONE T. W. PALMER, Spectral analysis of collectively compact strongly convergent operator sequences, Pac. J. Math. 25 (1968), 423-431. (1968) MR0227807
  7. J. W. DANIEL, Collectively compact sets of gradient mappings, Indag. Math. 30 (1968), 270-279. (1968) Zbl0157.45901MR0236758
  8. J. D. De PREE J. A. HIGGINS, Collectively compact sets of linear operators, Math. Z. 115 (1970), 366-370. (1970) MR0264425
  9. M. V. DESHPANDE N. E. JOSHI, Collectively compact and semi-compact sets of linear operators in topological vector spaces, Pac. J. Math. 43 (1972), 317-326. (1972) MR0324476
  10. M. A. KRASNOSELSKIJ J. B. RUTICKIJ, Convex Functions and Orlicz Spaces, Moscow, 1958 (Russian). (1958) 
  11. J. LLOYD, Differentiable mappings on topological vector spaces, Studia Math. 45 (1973), 147-160 and 49 (1973-4), 99-100. (1973) Zbl0274.46033MR0333724
  12. R. H. MOORE, Differentiability and convergence of compact nonlinear operators, J. Math. Anal. Appl. 16 (1966), 65-72. (1966) MR0196549
  13. K. J. PALMER, On the complete continuity of differentiate mappings, J. Austr. Math. Soc. 9 (1969), 441-444. (1969) MR0243393
  14. M. VAINBERG, Variational Methods for the Study of Nonlinear Operators, Moscow, 1956 (Russian). (1956) 
  15. V. I. AVERBUKH O. G. SMOLYANOV, The theory of differentiation in linear topological spaces, Usp. Mat. Nauk 22 (1967), 201-258 (Russian). (1967) 
  16. V. I. AVERBUKH O. G. SMOLYANOV, The various definitions of the derivative in linear topological spaces, Usp. Mat. Nauk 23 (1968), 67-113 (Russian). (1968) 
  17. M. Z. NASHED, Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... , in Nonlinear Functional Analysis and Applications (ed. J. B. Rall), New York 1971. (1971) MR0276840

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.