Decomposizione delle espressioni differenziali lineari omogenee in prodotti di fattori simbolici e applicazione relativa allo Studio delle equazioni differenziali lineari

G., Mammana

Mathematische Zeitschrift (1931)

  • Volume: 33, page 186-231
  • ISSN: 0025-5874; 1432-1823

How to cite

top

Mammana, G.,. "Decomposizione delle espressioni differenziali lineari omogenee in prodotti di fattori simbolici e applicazione relativa allo Studio delle equazioni differenziali lineari." Mathematische Zeitschrift 33 (1931): 186-231. <http://eudml.org/doc/168268>.

@article{Mammana1931,
author = {Mammana, G.,},
journal = {Mathematische Zeitschrift},
pages = {186-231},
title = {Decomposizione delle espressioni differenziali lineari omogenee in prodotti di fattori simbolici e applicazione relativa allo Studio delle equazioni differenziali lineari},
url = {http://eudml.org/doc/168268},
volume = {33},
year = {1931},
}

TY - JOUR
AU - Mammana, G.,
TI - Decomposizione delle espressioni differenziali lineari omogenee in prodotti di fattori simbolici e applicazione relativa allo Studio delle equazioni differenziali lineari
JO - Mathematische Zeitschrift
PY - 1931
VL - 33
SP - 186
EP - 231
UR - http://eudml.org/doc/168268
ER -

Citations in EuDML Documents

top
  1. Marko Švec, Несколько замечаний о линейном дифференциальном уравнении третьего порядка
  2. Jaromír Suchomel, Разложение линейных однородных дифференциальных операторов на сомножители 1-го порядка
  3. Miloš Ráb, O diferenciální rovnici y ' ' ' + 2 A ( x ) y ' + [ A ' ( x ) + ω ( x ) ] y = 0
  4. Miloš Ráb, O jistém zobecnění Sansonovy věty o neoscilaci integrálů diferenciální rovnice y ' ' ' + 2 A ( x ) y ' + [ A ' ( x ) + ω ( x ) ] y = 0
  5. Milan Gera, Allgemeine Bedingungen der Nichtoszillationsfähigkeit und der Oszillationsfähigkeit für die lineare Differentialgleichung dritter Ordnung y ' ' ' + p 1 ( x ) y ' ' + p 2 ( x ) y ' + p 3 ( x ) y = 0
  6. Jiří Taufer, On factorization method
  7. Milan Medveď, Sufficient condition for the non-oscillation of the non-homogeneous linear n -th order differential equation
  8. Valter Šeda, Über die Transformation der linearen Differentialgleichungen n -ter Ordnung. I.
  9. Jaromír Suchomel, Über die Zerlegungen von linearen homogenen Differentialoperatoren in Operatoren erster Ordnung
  10. František Neuman, Transformation theory of linear ordinary differential equations -- from local to global investigations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.