Nonlinear equations with linear part at resonance: Variational approach

Svatopluk Fučík

Commentationes Mathematicae Universitatis Carolinae (1977)

  • Volume: 018, Issue: 4, page 723-734
  • ISSN: 0010-2628

How to cite

top

Fučík, Svatopluk. "Nonlinear equations with linear part at resonance: Variational approach." Commentationes Mathematicae Universitatis Carolinae 018.4 (1977): 723-734. <http://eudml.org/doc/16866>.

@article{Fučík1977,
author = {Fučík, Svatopluk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {4},
pages = {723-734},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Nonlinear equations with linear part at resonance: Variational approach},
url = {http://eudml.org/doc/16866},
volume = {018},
year = {1977},
}

TY - JOUR
AU - Fučík, Svatopluk
TI - Nonlinear equations with linear part at resonance: Variational approach
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1977
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 018
IS - 4
SP - 723
EP - 734
LA - eng
UR - http://eudml.org/doc/16866
ER -

References

top
  1. S. AHMAD A. C. LAZER J. L. PAUL, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. Journal 25 (1976), 933-944. (1976) MR0427825
  2. M. S. BERGER M. SCHECHTER, On the solvability of semilinear operator equations and elliptic boundary value problems, Bull. Amer. Math. Soc. 78 (1972), 741-745. (1972) MR0303374
  3. S. FUČÍK, Nonlinear potential equations with linear parts at resonance, (to appear). MR0482425
  4. S. FUČÍK J. NEČAS V. SOUČEK, Variationsrechnung, Teubner Texte zur Mathematik, Teubner, Leipzig, 1977. (1977) MR0487654
  5. A. C. LAZER E. M. LANDESMAN D. R. MEYERS, On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52 (1975), 594-614. (1975) MR0420389
  6. A. C. LAZER, Some resonance problems for elliptic boundary value problems, Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289. M. Dekker Inc., New York and Basel, 1976. (19:) MR0487005
  7. M. M. VAJNBERG, Variational methods for the study of nonlinear operators, (Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964. (1956) MR0176364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.