Nonlinear equations with linear part at resonance: Variational approach
Commentationes Mathematicae Universitatis Carolinae (1977)
- Volume: 018, Issue: 4, page 723-734
- ISSN: 0010-2628
Access Full Article
topHow to cite
topFučík, Svatopluk. "Nonlinear equations with linear part at resonance: Variational approach." Commentationes Mathematicae Universitatis Carolinae 018.4 (1977): 723-734. <http://eudml.org/doc/16866>.
@article{Fučík1977,
author = {Fučík, Svatopluk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {4},
pages = {723-734},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Nonlinear equations with linear part at resonance: Variational approach},
url = {http://eudml.org/doc/16866},
volume = {018},
year = {1977},
}
TY - JOUR
AU - Fučík, Svatopluk
TI - Nonlinear equations with linear part at resonance: Variational approach
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1977
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 018
IS - 4
SP - 723
EP - 734
LA - eng
UR - http://eudml.org/doc/16866
ER -
References
top- S. AHMAD A. C. LAZER J. L. PAUL, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. Journal 25 (1976), 933-944. (1976) MR0427825
- M. S. BERGER M. SCHECHTER, On the solvability of semilinear operator equations and elliptic boundary value problems, Bull. Amer. Math. Soc. 78 (1972), 741-745. (1972) MR0303374
- S. FUČÍK, Nonlinear potential equations with linear parts at resonance, (to appear). MR0482425
- S. FUČÍK J. NEČAS V. SOUČEK, Variationsrechnung, Teubner Texte zur Mathematik, Teubner, Leipzig, 1977. (1977) MR0487654
- A. C. LAZER E. M. LANDESMAN D. R. MEYERS, On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52 (1975), 594-614. (1975) MR0420389
- A. C. LAZER, Some resonance problems for elliptic boundary value problems, Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289. M. Dekker Inc., New York and Basel, 1976. (19:) MR0487005
- M. M. VAJNBERG, Variational methods for the study of nonlinear operators, (Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964. (1956) MR0176364
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.