Nonlinear equations with linear part at resonance: Variational approach
Commentationes Mathematicae Universitatis Carolinae (1977)
- Volume: 018, Issue: 4, page 723-734
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- S. AHMAD A. C. LAZER J. L. PAUL, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. Journal 25 (1976), 933-944. (1976) MR0427825
- M. S. BERGER M. SCHECHTER, On the solvability of semilinear operator equations and elliptic boundary value problems, Bull. Amer. Math. Soc. 78 (1972), 741-745. (1972) MR0303374
- S. FUČÍK, Nonlinear potential equations with linear parts at resonance, (to appear). MR0482425
- S. FUČÍK J. NEČAS V. SOUČEK, Variationsrechnung, Teubner Texte zur Mathematik, Teubner, Leipzig, 1977. (1977) MR0487654
- A. C. LAZER E. M. LANDESMAN D. R. MEYERS, On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52 (1975), 594-614. (1975) MR0420389
- A. C. LAZER, Some resonance problems for elliptic boundary value problems, Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289. M. Dekker Inc., New York and Basel, 1976. (19:) MR0487005
- M. M. VAJNBERG, Variational methods for the study of nonlinear operators, (Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964. (1956) MR0176364