Ideals in transformation semigroups

Robert P. Sullivan

Commentationes Mathematicae Universitatis Carolinae (1978)

  • Volume: 019, Issue: 3, page 431-446
  • ISSN: 0010-2628

How to cite

top

Sullivan, Robert P.. "Ideals in transformation semigroups." Commentationes Mathematicae Universitatis Carolinae 019.3 (1978): 431-446. <http://eudml.org/doc/16914>.

@article{Sullivan1978,
author = {Sullivan, Robert P.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ideals of Transformation Semigroups; Partial Transformation; Cotransitive Transformation Semigroups; Ideals of a Cotransitive Semigroup; Completely Prime Ideals; Completely Semiprime Ideals},
language = {eng},
number = {3},
pages = {431-446},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Ideals in transformation semigroups},
url = {http://eudml.org/doc/16914},
volume = {019},
year = {1978},
}

TY - JOUR
AU - Sullivan, Robert P.
TI - Ideals in transformation semigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1978
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 019
IS - 3
SP - 431
EP - 446
LA - eng
KW - Ideals of Transformation Semigroups; Partial Transformation; Cotransitive Transformation Semigroups; Ideals of a Cotransitive Semigroup; Completely Prime Ideals; Completely Semiprime Ideals
UR - http://eudml.org/doc/16914
ER -

References

top
  1. CLIFFORD A. H. G. B. PRESTON, The Algebraic Theory of Semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence, R.I., Vol. 1, 1961. Vol. 2, 1967. (1961) 
  2. FITZGERALD D. G. G. B. PRESTON, Divisibility of Binary relations, Bull. Austral. Math. Soc. 5 (1971), 75-86. (1971) MR0292988
  3. LIBER A. E., On Symmetric generalized groups, Mat. Sb. (NS) 33 (75) (1953), 531-544. (1953) MR0059268
  4. LJAPIN E. S., Semigroups, Translations of Math. Mono., Amer. Math. Soc. Providence, R.I., 3rd. Ed.,1974. (1974) MR0352302
  5. LUH J., On reflective ideals of a ring and a semigroup, Port. Math. 20 (1961), 119-125. (1961) MR0131483
  6. MALCEV A. I., Symmetric Groupoids, Mat. Sb. (NS) 31 (73) (1952), 136-151. (1952) MR0050576
  7. PETRICH M., Introduction to Semigroups, Charles 1. Merrill Publ. Co., Columbus, Ohio, 1973. (1973) Zbl0321.20037MR0393206
  8. PRESTON G. B., Lectures on Semigroups, ed. J. M. Howie, Summer Inst. of Amer. Math. Soc., Penn. State University, 1963. (1963) 
  9. REILLY N. R., Embedding inverse semigroups in bisimple inverse semigroups, Quart. J. Math. Oxford (2) 16 (1965), 183-187. (1965) Zbl0158.02004MR0190251
  10. SULLIVAN R. P., Automorphisms of Transformation Semigroups, J. Austral. Math. Soc. 20 (Series A) 1975, 77-84. (1975) Zbl0318.20042MR0372095
  11. SUTOV E. G., On semigroups of almost identical transformations, Dokl. Akad. Nauk SSSR 134 (1960), 292-295; translated as Soviet Math. Dokl. 1 (1961), 1080-1083. (1960) MR0126496
  12. SUTOV E. G., Homomorphisms of the semigroup of all partial transformations, Izv. Vysš. Učebn. Zaved. Mat., 1961, No. 3 (22), 177-184. (1961) MR0150223
  13. SUTOV E. G., Semigroups of one-to-one transformations, Dokl. Akad. Nauk SSSR 140 (1961), 1026-1028. (1961) MR0130923
  14. SUTOV E. G., On a certain semigroup of one-to-one transformations, Uspehi Mat. Nauk 18 (1963), No. 3 (111), 231-235. (1963) MR0153767
  15. THIERRIN G., Contгibtition à la théorie des anneaux et des demi-groupes, Comment. Math. Helv. 32 (1957), 93-112. (1957) MR0092788
  16. VOROBEV N. N., On symmetric associative systems, Leningrad. Gos. Ped. Inst., Uč. Zap. 89 (1953), 161-166. (1953) MR0076778

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.