On vector-topological properties of zero-neighbourhoods of topological vector spaces

Thomas Riedrich

Commentationes Mathematicae Universitatis Carolinae (1980)

  • Volume: 021, Issue: 1, page 119-129
  • ISSN: 0010-2628

How to cite

top

Riedrich, Thomas. "On vector-topological properties of zero-neighbourhoods of topological vector spaces." Commentationes Mathematicae Universitatis Carolinae 021.1 (1980): 119-129. <http://eudml.org/doc/17020>.

@article{Riedrich1980,
author = {Riedrich, Thomas},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {topology of convergence in measure; connected sets; measurable functions},
language = {eng},
number = {1},
pages = {119-129},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On vector-topological properties of zero-neighbourhoods of topological vector spaces},
url = {http://eudml.org/doc/17020},
volume = {021},
year = {1980},
}

TY - JOUR
AU - Riedrich, Thomas
TI - On vector-topological properties of zero-neighbourhoods of topological vector spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1980
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 021
IS - 1
SP - 119
EP - 129
LA - eng
KW - topology of convergence in measure; connected sets; measurable functions
UR - http://eudml.org/doc/17020
ER -

References

top
  1. BOURBAKI N., Espaces vectoriels topologiques. Chap. I-II, Act. Sci. Ind. 1189, Hermann, Paris 1953. (1953) MR0054161
  2. IVES R. T., Semi-convexity and locally bounded spaces, Ph.D. Thesis, Univ. of Washington, Seattle 1957. (1957) 
  3. KLEE V., Shrinkable neighbourhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281-285. (1960) MR0131149
  4. KLEE V., Leray-Schauder theory without local convexity, Math. Ann.141 (1960), 286-296. (1960) Zbl0096.08001MR0131150
  5. KLEE V., Connectedness in topological linear spaces, Israel J. of Mathematics 2 (1964), 127-131. (1964) Zbl0135.16102MR0179579
  6. KLEE V., BESSAGA C., Every non-normable Fréchet space is homeomorphic with all of its closed convex bodies, Note added in proof p. 166, Math. Ann. 163 (1966), 161-166. (1966) Zbl0138.37403MR0201949
  7. KÖTHE G., Topologische lineare Räume I, Springer-Verlag Berlin - Göttingen - Heidelberg I960. MR0130551
  8. LANDSBERG M., Lineare beschränkte Abbildungen von einem Produkt in einen lokal radial beschränkten Raum und ihre Filter, Math. Ann. 146 (1962), 232-248. (1962) Zbl0105.31003MR0136962
  9. LANDSBERG M., Über die Fixpunkte kompakter Abbildungen, Math. Ann. 154 (1964), 427-431. (1964) Zbl0136.12001MR0165345
  10. RIEDRICH T., Das Birkhoff-Kellogg-Theorem für lokal radial beschränkte Räume, Math. Ann. 166 (1966), 264-276. (1966) Zbl0144.17803MR0203536
  11. RIEDRICH T., Über Existenzsätze für positive Eigenwerte kompakter Abbildungen in topologischen Vektorräumen, Habilitationsschrift (unveröffentlicht), Dresden 1966. (1966) 
  12. RIEDRICH T., Vorlesungen über nichtlineare Operatorengleichungen, Teubner-Texte, Leipzig 1976. (1976) Zbl0332.47026MR0467414
  13. RIEDRICH T., Über topologische Eigenschaften von Nullumgebungen topologischer Vektorräume, Wiss. Z. TU Dresden 26 (1977), 671-672. (1977) Zbl0413.46002MR0454564

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.