Nonsupercompactness and the reduced measure algebra
Commentationes Mathematicae Universitatis Carolinae (1980)
- Volume: 021, Issue: 3, page 507-512
- ISSN: 0010-2628
Access Full Article
topHow to cite
topDouwen, Eric K.. "Nonsupercompactness and the reduced measure algebra." Commentationes Mathematicae Universitatis Carolinae 021.3 (1980): 507-512. <http://eudml.org/doc/17053>.
@article{Douwen1980,
author = {Douwen, Eric K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonsupercompactness; reduced measure algebra; Stone space; n-supercompact spaces; separability; closed base; linked system of subsets},
language = {eng},
number = {3},
pages = {507-512},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Nonsupercompactness and the reduced measure algebra},
url = {http://eudml.org/doc/17053},
volume = {021},
year = {1980},
}
TY - JOUR
AU - Douwen, Eric K.
TI - Nonsupercompactness and the reduced measure algebra
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1980
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 021
IS - 3
SP - 507
EP - 512
LA - eng
KW - nonsupercompactness; reduced measure algebra; Stone space; n-supercompact spaces; separability; closed base; linked system of subsets
UR - http://eudml.org/doc/17053
ER -
References
top- M. G. Bell, Not all compact spaces are supercompact, Gen. Top. Appl. 8 (1978), 151-155. (1978) MR0474199
- M. G. Bell, A cellular constraint in supercompact Hausdorff spaces, Can. J. Math. 30 (1978), 1144-1151. (1978) Zbl0367.54009MR0511552
- M. G. Bell, A first countable supercompact Hausdorff space with a closed non-supercompact subspace, Coll. Math. (to appear). Zbl0474.54012MR0628178
- M. G. Bell J. van Mill, The compactness number of a compact topological space, Fund. Math. (to appear). MR0584490
- E. K. van Douwen, Density of compactifications, in 'Set theoretic topology', G. M. Reed (ed.). Academic Press, New York (1977), 97-110. (1977) Zbl0379.54006MR0442887
- E. K. van Douwen, Special bases for compact metrizable spaces, Fund. Math. (to appear). Zbl0497.54031MR0611760
- E. K. van Douwen J. van Mill, Supercompact spaces, Top. Appl. (to appear).
- A. M. Gleason, Projective topological spaces, III, J. Math 2 2 (1958), 482-489. (1958) MR0121775
- J. de Groot, Supercompactness and superextensions, Contrib. to Extension Theory of Top. Struct. Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin (1969), 89-90. (1967)
- J. L. Kelley, General Topology, Van Nostr and Reinhold Cy., New York, 1955. (1955) Zbl0066.16604MR0070144
- J. van Mill C. F. Mills, On the character of supercompact topological spaces, Top. Proc. 3 (1978), 227-236. (1978) MR0540493
- J. van Mill C. F. Mills, Closed subsets of supercompact Hausdorff spaces, Indag. Math. 41 (1979), 155-162. (1979) MR0535563
- C. F. Mills, A simpler proof that compact metric spaces are supercompact, Proc. AMS 73 (1979), 388-390. (1979) Zbl0401.54018MR0518526
- C. F. Mills, Compact topological groups are supercompact, Fund. Math. (to appear).
- C. F. Mills J. van Mill, A nonsupercompact continuous image of a supercompact space, Houston J. Math. 5 (1979), 241-247. (1979) MR0546758
- M. Strok A. Szymański, Compact metric spaces have binary bases, Fund. Math. 89 (1975), 81-91. (1975) MR0383351
- A. Verbeck, Superextensions of topological spaces, Ph.D. dissertation, Univ. of Amsterdam, 1972, Mathematical Centre Tract 41, Amsterdam, 1972. (1972)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.