The eigenvalue theorem of Krasnoselski for k -set contraction mappings

Thomas Jerofsky

Commentationes Mathematicae Universitatis Carolinae (1981)

  • Volume: 022, Issue: 2, page 413-427
  • ISSN: 0010-2628

How to cite

top

Jerofsky, Thomas. "Das Eigenwerttheorem von Krasnoselski für $k$-kondensierende Abbildungen." Commentationes Mathematicae Universitatis Carolinae 022.2 (1981): 413-427. <http://eudml.org/doc/17119>.

@article{Jerofsky1981,
author = {Jerofsky, Thomas},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {eigenvalues; fixed points; k-set contractions},
language = {ger},
number = {2},
pages = {413-427},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Das Eigenwerttheorem von Krasnoselski für $k$-kondensierende Abbildungen},
url = {http://eudml.org/doc/17119},
volume = {022},
year = {1981},
}

TY - JOUR
AU - Jerofsky, Thomas
TI - Das Eigenwerttheorem von Krasnoselski für $k$-kondensierende Abbildungen
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1981
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 022
IS - 2
SP - 413
EP - 427
LA - ger
KW - eigenvalues; fixed points; k-set contractions
UR - http://eudml.org/doc/17119
ER -

References

top
  1. G. D. BIRKHOFF O. D. KELLOGG, Invariant points in function spaces, Trans. Amer. Math. Soc. 23 (1922), 95-115. (1922) MR1501192
  2. S. J. DAHER, Fixed point theorems for nonlinear operators with a sequential condition, Nonlin. Analysis, Theory Methods and Appl. 3 (1979), No 1, 59-63. (1979) Zbl0424.47036MR0520472
  3. J. DANEŠ, On densifying and related mappings and their applications in nonlinear functional analysis, Proc. of a Summer school 1972 Neuendorf, GDR, Berlin 1974. (1972) MR0361946
  4. P. M. FITZPATRICK W. V. PETRYSHY, Positive eigenvalues for nonlinear multivalued noncompact operators with applications to differential operators, Journ. Diff. Equ., New York - London 22 (1976), 428-441. (1976) MR0435958
  5. S. HAHN, Eigenwertaussagen für kompakte und kondensierende mengenwertige Abbildungen in topologischen Vektorräumen, Comment. Math. Univ. Carolinae 20 (1979). (1979) Zbl0442.47038MR0526153
  6. T. JEROFSKY, Übeг Existenzaussagen für kondensierende Abbildungen, Wiss. Z. Techn. Univ. Dresden 28 (1979) H 5, 1183-1187. (1979) MR0567631
  7. V. KLEE, Schrinkable neighborhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281-285. (1960) MR0131149
  8. M. A. KRASNOSELSKI, Polozitelnye resenia operatornych uravnenii, Moskau, Fizmatgiz 1962. (1962) 
  9. K. KURATOWSKI, Sur les espaces complets, Fund. Math. 15 (1930), 301-309. (1930) 
  10. M. LANDSBERG T. RIEDRICH, Über positive Eigenwerte kompakter Abbildungen in topologischen Vektorräumen, Math. Ann. 163 (1966), 50-61. (1966) MR0196546
  11. M. MARTELLI, A Rothe's type theorem for noncompact acyclic-valued maps, Proc. of the conference on problems in nonlin. funct. anal. Universität Bonn, July 22-26, 1975. Ber. Ges. f. Math. u. Datenverarb. Bonn No 103 (1975). (1975) Zbl0333.47025
  12. I. MASSABO C. A. STUART, Positive eigenvectors of k -set contractions, Nonlin. Analysis, Theory, Methods and Appl. 3 (1979), No 1, 35-44. (1979) MR0520468
  13. R. D. NUSSBAUM, Asymptotic fixed point theorems for local condensing maps, Math. Ann. 191 (1971), 181-195. (191) MR0298502
  14. S. REICH, Characteristic vectors of nonlinear operators, Rend. Accad. Naz. Lincei 50 (1971), 682-685. (1971) Zbl0231.47042MR0306987
  15. J. REINERMANN, Problems, Mathematica Balcanica 4. 96 (1974), 516. (1974) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.